BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

470 related articles for article (PubMed ID: 8117659)

  • 1. Tyrosine-48 is the proton donor and histidine-110 directs substrate stereochemical selectivity in the reduction reaction of human aldose reductase: enzyme kinetics and crystal structure of the Y48H mutant enzyme.
    Bohren KM; Grimshaw CE; Lai CJ; Harrison DH; Ringe D; Petsko GA; Gabbay KH
    Biochemistry; 1994 Mar; 33(8):2021-32. PubMed ID: 8117659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of human aldehyde reductase: characterization of the active site pocket.
    Barski OA; Gabbay KH; Grimshaw CE; Bohren KM
    Biochemistry; 1995 Sep; 34(35):11264-75. PubMed ID: 7669785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aldose reductase as a target for drug design: molecular modeling calculations on the binding of acyclic sugar substrates to the enzyme.
    De Winter HL; von Itzstein M
    Biochemistry; 1995 Jul; 34(26):8299-308. PubMed ID: 7599122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Residues affecting the catalysis and inhibition of rat lens aldose reductase.
    Carper DA; Hohman TC; Old SE
    Biochim Biophys Acta; 1995 Jan; 1246(1):67-73. PubMed ID: 7811733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Kumar VP; Thomas LM; Bobyk KD; Andi B; Cook PF; West AH
    Biochemistry; 2012 Jan; 51(4):857-66. PubMed ID: 22243403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the active site of human aldose reductase. Site-directed mutagenesis of Asp-43, Tyr-48, Lys-77, and His-110.
    Tarle I; Borhani DW; Wilson DK; Quiocho FA; Petrash JM
    J Biol Chem; 1993 Dec; 268(34):25687-93. PubMed ID: 8245005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant.
    Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B
    Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic mechanism of aldose reductase studied by the combined potentials of quantum mechanics and molecular mechanics.
    Lee YS; Hodoscek M; Brooks BR; Kador PF
    Biophys Chem; 1998 Mar; 70(3):203-16. PubMed ID: 9546197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An anion binding site in human aldose reductase: mechanistic implications for the binding of citrate, cacodylate, and glucose 6-phosphate.
    Harrison DH; Bohren KM; Ringe D; Petsko GA; Gabbay KH
    Biochemistry; 1994 Mar; 33(8):2011-20. PubMed ID: 8117658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of aldose reductase inhibition: binding of NADP+/NADPH and alrestatin-like inhibitors.
    Ehrig T; Bohren KM; Prendergast FG; Gabbay KH
    Biochemistry; 1994 Jun; 33(23):7157-65. PubMed ID: 8003482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates.
    Basarab GS; Steffens JJ; Wawrzak Z; Schwartz RS; Lundqvist T; Jordan DB
    Biochemistry; 1999 May; 38(19):6012-24. PubMed ID: 10320327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling the catalytic reaction in human aldose reductase.
    Várnai P; Richards WG; Lyne PD
    Proteins; 1999 Nov; 37(2):218-27. PubMed ID: 10584067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The crystal structure of an aldehyde reductase Y50F mutant-NADP complex and its implications for substrate binding.
    Ye Q; Hyndman D; Green NC; Li L; Jia Z; Flynn TG
    Chem Biol Interact; 2001 Jan; 130-132(1-3):651-8. PubMed ID: 11306083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the substrate binding site of Candida tenuis xylose reductase (AKR2B5) with site-directed mutagenesis.
    Kratzer R; Leitgeb S; Wilson DK; Nidetzky B
    Biochem J; 2006 Jan; 393(Pt 1):51-8. PubMed ID: 16336198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human aldose reductase: pK of tyrosine 48 reveals the preferred ionization state for catalysis and inhibition.
    Grimshaw CE; Bohren KM; Lai CJ; Gabbay KH
    Biochemistry; 1995 Nov; 34(44):14374-84. PubMed ID: 7578041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The crystallographic structure of the aldose reductase-IDD552 complex shows direct proton donation from tyrosine 48.
    Ruiz F; Hazemann I; Mitschler A; Joachimiak A; Schneider T; Karplus M; Podjarny A
    Acta Crystallogr D Biol Crystallogr; 2004 Aug; 60(Pt 8):1347-54. PubMed ID: 15272156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retention of NADPH-linked quinone reductase activity in an aldo-keto reductase following mutation of the catalytic tyrosine.
    Schlegel BP; Ratnam K; Penning TM
    Biochemistry; 1998 Aug; 37(31):11003-11. PubMed ID: 9692994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic stabilization in a pre-organized polar active site: the catalytic role of Lys-80 in Candida tenuis xylose reductase (AKR2B5) probed by site-directed mutagenesis and functional complementation studies.
    Kratzer R; Nidetzky B
    Biochem J; 2005 Jul; 389(Pt 2):507-15. PubMed ID: 15799715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography.
    Petschacher B; Leitgeb S; Kavanagh KL; Wilson DK; Nidetzky B
    Biochem J; 2005 Jan; 385(Pt 1):75-83. PubMed ID: 15320875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic effectiveness of human aldose reductase. Critical role of C-terminal domain.
    Bohren KM; Grimshaw CE; Gabbay KH
    J Biol Chem; 1992 Oct; 267(29):20965-70. PubMed ID: 1400412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.