BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 8117680)

  • 1. Quantitative agarose gel electrophoresis of chromatin: nucleosome-dependent changes in charge, sharp, and deformability at low ionic strength.
    Fletcher TM; Krishnan U; Serwer P; Hansen JC
    Biochemistry; 1994 Mar; 33(8):2226-33. PubMed ID: 8117680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of macromolecular conformational changes using agarose gel electrophoresis: application to chromatin folding.
    Fletcher TM; Serwer P; Hansen JC
    Biochemistry; 1994 Sep; 33(36):10859-63. PubMed ID: 8086402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding.
    Carruthers LM; Bednar J; Woodcock CL; Hansen JC
    Biochemistry; 1998 Oct; 37(42):14776-87. PubMed ID: 9778352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly and structural properties of subsaturated chromatin arrays.
    Hansen JC; Lohr D
    J Biol Chem; 1993 Mar; 268(8):5840-8. PubMed ID: 8449950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of Quantitative Agarose Gel Electrophoresis for rapid analysis of the integrity of protein-DNA complexes.
    Adkins NL; Hall JA; Georgel PT
    J Biochem Biophys Methods; 2007 Aug; 70(5):721-6. PubMed ID: 17604110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin stability at low concentration depends on histone octamer saturation levels.
    Hagerman TA; Fu Q; Molinié B; Denvir J; Lindsay S; Georgel PT
    Biophys J; 2009 Mar; 96(5):1944-51. PubMed ID: 19254554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly of nucleosomal arrays from recombinant core histones and nucleosome positioning DNA.
    Rogge RA; Kalashnikova AA; Muthurajan UM; Porter-Goff ME; Luger K; Hansen JC
    J Vis Exp; 2013 Sep; (79):. PubMed ID: 24056546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remodeling and Repositioning of Nucleosomes in Nucleosomal Arrays.
    Ludwigsen J; Hepp N; Klinker H; Pfennig S; Mueller-Planitz F
    Methods Mol Biol; 2018; 1805():349-370. PubMed ID: 29971727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Dependence of the chromatin condensation process on the temperature and ionic strength of the media: investigation using gel electrophoresis in low density agarose].
    Kraevskiĭ VA; Panin VM; Razin SV
    Biofizika; 1994; 39(4):619-27. PubMed ID: 7981271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnesium-dependent association and folding of oligonucleosomes reconstituted with ubiquitinated H2A.
    Jason LJ; Moore SC; Ausio J; Lindsey G
    J Biol Chem; 2001 May; 276(18):14597-601. PubMed ID: 11278847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the electrophoretic properties of nucleosome core particles by transverse polyacrylamide pore gradient gel electrophoresis.
    Orbán L; Garner MM; Wheeler D; Tietz D; Chrambach A
    Electrophoresis; 1993 Aug; 14(8):720-4. PubMed ID: 8404815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleosomal arrays can be salt-reconstituted on a single-copy MMTV promoter DNA template: their properties differ in several ways from those of comparable 5S concatameric arrays.
    Bash R; Wang H; Yodh J; Hager G; Lindsay SM; Lohr D
    Biochemistry; 2003 Apr; 42(16):4681-90. PubMed ID: 12705831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The sieving of rod-shaped viruses during agarose gel electrophoresis. I. Comparison with the sieving of spheres.
    Griess GA; Moreno ET; Herrmann R; Serwer P
    Biopolymers; 1990 Jul-Aug 5; 29(8-9):1277-87. PubMed ID: 2369633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of nucleosome unwrapping within chromatin fibers using magnetic tweezers.
    Chien FT; van der Heijden T
    Biophys J; 2014 Jul; 107(2):373-383. PubMed ID: 25028879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The electric field dependence of DNA mobilities in agarose gels: a reinvestigation.
    Holmes DL; Stellwagen NC
    Electrophoresis; 1990 Jan; 11(1):5-15. PubMed ID: 2318191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A statistical thermodynamic model applied to experimental AFM population and location data is able to quantify DNA-histone binding strength and internucleosomal interaction differences between acetylated and unacetylated nucleosomal arrays.
    Solis FJ; Bash R; Yodh J; Lindsay SM; Lohr D
    Biophys J; 2004 Nov; 87(5):3372-87. PubMed ID: 15347582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic mechanism of nucleosome spacing.
    Blank TA; Becker PB
    J Mol Biol; 1995 Sep; 252(3):305-13. PubMed ID: 7563052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The formation of small-pore gels by an electrically charged agarose derivative.
    Griess GA; Guiseley KB; Miller MM; Harris RA; Serwer P
    J Struct Biol; 1998 Oct; 123(2):134-42. PubMed ID: 9843667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship of agarose gel structure to the sieving of spheres during agarose gel electrophoresis.
    Griess GA; Guiseley KB; Serwer P
    Biophys J; 1993 Jul; 65(1):138-48. PubMed ID: 8369423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of nucleosome phasing sequences and DNA topology on nucleosome spacing.
    Blank TA; Becker PB
    J Mol Biol; 1996 Jul; 260(1):1-8. PubMed ID: 8676389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.