These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 8117685)
1. Probing the role of histidine-372 in zinc binding and the catalytic mechanism of Escherichia coli alkaline phosphatase by site-specific mutagenesis. Xu X; Qin XQ; Kantrowitz ER Biochemistry; 1994 Mar; 33(8):2279-84. PubMed ID: 8117685 [TBL] [Abstract][Full Text] [Related]
2. Kinetic and X-ray structural studies of a mutant Escherichia coli alkaline phosphatase (His-412-->Gln) at one of the zinc binding sites. Ma L; Kantrowitz ER Biochemistry; 1996 Feb; 35(7):2394-402. PubMed ID: 8652582 [TBL] [Abstract][Full Text] [Related]
3. The importance of aspartate 327 for catalysis and zinc binding in Escherichia coli alkaline phosphatase. Xu X; Kantrowitz ER J Biol Chem; 1992 Aug; 267(23):16244-51. PubMed ID: 1644810 [TBL] [Abstract][Full Text] [Related]
4. Mutations at histidine 412 alter zinc binding and eliminate transferase activity in Escherichia coli alkaline phosphatase. Ma L; Kantrowitz ER J Biol Chem; 1994 Dec; 269(50):31614-9. PubMed ID: 7989332 [TBL] [Abstract][Full Text] [Related]
5. A water-mediated salt link in the catalytic site of Escherichia coli alkaline phosphatase may influence activity. Xu X; Kantrowitz ER Biochemistry; 1991 Aug; 30(31):7789-96. PubMed ID: 1907846 [TBL] [Abstract][Full Text] [Related]
6. Escherichia coli alkaline phosphatase: X-ray structural studies of a mutant enzyme (His-412-->Asn) at one of the catalytically important zinc binding sites. Ma L; Tibbitts TT; Kantrowitz ER Protein Sci; 1995 Aug; 4(8):1498-506. PubMed ID: 8520475 [TBL] [Abstract][Full Text] [Related]
7. Kinetics and crystal structure of a mutant Escherichia coli alkaline phosphatase (Asp-369-->Asn): a mechanism involving one zinc per active site. Tibbitts TT; Xu X; Kantrowitz ER Protein Sci; 1994 Nov; 3(11):2005-14. PubMed ID: 7703848 [TBL] [Abstract][Full Text] [Related]
8. Conversion of a magnesium binding site into a zinc binding site by a single amino acid substitution in Escherichia coli alkaline phosphatase. Murphy JE; Xu X; Kantrowitz ER J Biol Chem; 1993 Oct; 268(29):21497-500. PubMed ID: 8407998 [TBL] [Abstract][Full Text] [Related]
9. Glutamic acid residues as metal ligands in the active site of Escherichia coli alkaline phosphatase. Wojciechowski CL; Kantrowitz ER Biochim Biophys Acta; 2003 Jun; 1649(1):68-73. PubMed ID: 12818192 [TBL] [Abstract][Full Text] [Related]
10. Rate-determining step of Escherichia coli alkaline phosphatase altered by the removal of a positive charge at the active center. Sun L; Martin DC; Kantrowitz ER Biochemistry; 1999 Mar; 38(9):2842-8. PubMed ID: 10052956 [TBL] [Abstract][Full Text] [Related]
11. Site-directed mutagenesis of histidine-90 in Escherichia coli L-threonine dehydrogenase alters its substrate specificity. Johnson AR; Dekker EE Arch Biochem Biophys; 1998 Mar; 351(1):8-16. PubMed ID: 9500838 [TBL] [Abstract][Full Text] [Related]
12. Alteration of aspartate 101 in the active site of Escherichia coli alkaline phosphatase enhances the catalytic activity. Chaidaroglou A; Kantrowitz ER Protein Eng; 1989 Nov; 3(2):127-32. PubMed ID: 2687845 [TBL] [Abstract][Full Text] [Related]
13. Binding of magnesium in a mutant Escherichia coli alkaline phosphatase changes the rate-determining step in the reaction mechanism. Xu X; Kantrowitz ER Biochemistry; 1993 Oct; 32(40):10683-91. PubMed ID: 8104481 [TBL] [Abstract][Full Text] [Related]
14. Kinetic and structural consequences of replacing the aspartate bridge by asparagine in the catalytic metal triad of Escherichia coli alkaline phosphatase. Tibbitts TT; Murphy JE; Kantrowitz ER J Mol Biol; 1996 Apr; 257(3):700-15. PubMed ID: 8648634 [TBL] [Abstract][Full Text] [Related]
15. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase. Wang J; Stieglitz KA; Kantrowitz ER Biochemistry; 2005 Jun; 44(23):8378-86. PubMed ID: 15938627 [TBL] [Abstract][Full Text] [Related]
16. Enhanced catalysis by active-site mutagenesis at aspartic acid 153 in Escherichia coli alkaline phosphatase. Matlin AR; Kendall DA; Carano KS; Banzon JA; Klecka SB; Solomon NM Biochemistry; 1992 Sep; 31(35):8196-200. PubMed ID: 1525159 [TBL] [Abstract][Full Text] [Related]
17. Magnesium in the active site of Escherichia coli alkaline phosphatase is important for both structural stabilization and catalysis. Janeway CM; Xu X; Murphy JE; Chaidaroglou A; Kantrowitz ER Biochemistry; 1993 Feb; 32(6):1601-9. PubMed ID: 8431439 [TBL] [Abstract][Full Text] [Related]
18. Function of arginine-166 in the active site of Escherichia coli alkaline phosphatase. Chaidaroglou A; Brezinski DJ; Middleton SA; Kantrowitz ER Biochemistry; 1988 Nov; 27(22):8338-43. PubMed ID: 3072019 [TBL] [Abstract][Full Text] [Related]
19. Kinetic and X-ray structural studies of three mutant E. coli alkaline phosphatases: insights into the catalytic mechanism without the nucleophile Ser102. Stec B; Hehir MJ; Brennan C; Nolte M; Kantrowitz ER J Mol Biol; 1998 Apr; 277(3):647-62. PubMed ID: 9533886 [TBL] [Abstract][Full Text] [Related]