These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 8117690)

  • 1. Cholesterol distribution in renal epithelial cells LLC-PK1 as determined by cholesterol oxidase: evidence that glutaraldehyde fixation masks plasma membrane cholesterol pools.
    el Yandouzi EH; Zlatkine P; Moll G; Le Grimellec C
    Biochemistry; 1994 Mar; 33(8):2329-34. PubMed ID: 8117690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of cholesterol oxidase treatment on physical state of renal brush border membranes: evidence for a cholesterol pool interacting weakly with membrane lipids.
    el Yandouzi EH; Le Grimellec C
    Biochemistry; 1993 Mar; 32(8):2047-52. PubMed ID: 8448163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholesterol heterogeneity in the plasma membrane of epithelial cells.
    el Yandouzi EH; Le Grimellec C
    Biochemistry; 1992 Jan; 31(2):547-51. PubMed ID: 1731911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apical trehalase expression associated with cell patterning after inducer treatment of LLC-PK1 monolayers.
    Yoneyama Y; Lever JE
    J Cell Physiol; 1987 Jun; 131(3):330-41. PubMed ID: 3298285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential toxic effects of gentamicin on cultured renal epithelial cells (LLC-PK1) on application to the brush border membrane or the basolateral membrane.
    Kiyomiya K; Matsushita N; Matsuo S; Kurebe M
    J Vet Med Sci; 2000 Sep; 62(9):971-5. PubMed ID: 11039593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of sphingomyelin degradation on cell cholesterol oxidizability and steady-state distribution between the cell surface and the cell interior.
    Slotte JP; Hedström G; Rannström S; Ekman S
    Biochim Biophys Acta; 1989 Oct; 985(1):90-6. PubMed ID: 2790049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the distribution of cholesterol in the intact cell.
    Lange Y; Ramos BV
    J Biol Chem; 1983 Dec; 258(24):15130-4. PubMed ID: 6418742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phospholipid methylation of kidney cortex brush border membranes. Effect on fluidity and transport.
    Chauhan VP; Sikka SC; Kalra VK
    Biochim Biophys Acta; 1982 Jun; 688(2):357-68. PubMed ID: 7104330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Release of cAMP from a renal epithelial cell line.
    Strewler GJ
    Am J Physiol; 1984 Mar; 246(3 Pt 1):C224-30. PubMed ID: 6322592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarity of transport of 2-deoxy-D-glucose and D-glucose by cultured renal epithelia (LLC-PK1).
    Miller JH; Mullin JM; McAvoy E; Kleinzeller A
    Biochim Biophys Acta; 1992 Oct; 1110(2):209-17. PubMed ID: 1390850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increase in membrane fluidity and opening of tight junctions have similar effects on sodium-coupled uptakes in renal epithelial cells.
    Friedlander G; Shahedi M; Le Grimellec C; Amiel C
    J Biol Chem; 1988 Aug; 263(23):11183-8. PubMed ID: 3403520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of chronic metabolic acidosis on Na(+)-H+ exchangers in LLC-PK1 renal epithelial cells.
    Igarashi P; Freed MI; Ganz MB; Reilly RF
    Am J Physiol; 1992 Jul; 263(1 Pt 2):F83-8. PubMed ID: 1322057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different development of apical and basolateral Na-H exchangers in LLC-PK1 renal epithelial cells: characterization by inhibitors and antisense oligonucleotide.
    Kuwahara M; Sasaki S; Uchida S; Cragoe EJ; Marumo F
    Biochim Biophys Acta; 1994 Jan; 1220(2):132-8. PubMed ID: 8312357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleoside transport in cultured LLC-PK1 epithelia.
    Griffith DA; Doherty AJ; Jarvis SM
    Biochim Biophys Acta; 1992 May; 1106(2):303-10. PubMed ID: 1596509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. H+-gradient-dependent active transport of tetraethylammonium cation in apical-membrane vesicles isolated from kidney epithelial cell line LLC-PK1.
    Inui K; Saito H; Hori R
    Biochem J; 1985 Apr; 227(1):199-203. PubMed ID: 2986603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphology of the differentiation and maturation of LLC-PK1 epithelia.
    Pfaller W; Gstraunthaler G; Loidl P
    J Cell Physiol; 1990 Feb; 142(2):247-54. PubMed ID: 2303524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na+-independent sugar transport by cultured renal (LLC-PK1) epithelial cells.
    Mullin JM; McGinn MT; Snock KV; Kofeldt LM
    Am J Physiol; 1989 Jul; 257(1 Pt 2):F11-7. PubMed ID: 2750915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential rate of cholesterol efflux from the apical and basolateral membranes of MDCK cells.
    Remaley AT; Farsi BD; Shirali AC; Hoeg JM; Brewer HB
    J Lipid Res; 1998 Jun; 39(6):1231-8. PubMed ID: 9643354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium transport systems in the LLC-PK1 renal epithelial established cell line.
    Parys JB; De Smedt H; Borghgraef R
    Biochim Biophys Acta; 1986 Aug; 888(1):70-81. PubMed ID: 2874834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous reversal of polarity of the voltage across LLC-PK1 renal epithelial cell sheets.
    Mullin JM; O'Brien TG
    J Cell Physiol; 1987 Dec; 133(3):515-22. PubMed ID: 3693411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.