These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 8117693)
1. Bipartite DNA recognition by the human Oct-2 POU domain: POUs-specific phosphate contacts are analogous to those of bacteriophage lambda repressor. Botfield MC; Weiss MA Biochemistry; 1994 Mar; 33(9):2349-55. PubMed ID: 8117693 [TBL] [Abstract][Full Text] [Related]
2. An altered-specificity mutation in a human POU domain demonstrates functional analogy between the POU-specific subdomain and phage lambda repressor. Jancso A; Botfield MC; Sowers LC; Weiss MA Proc Natl Acad Sci U S A; 1994 Apr; 91(9):3887-91. PubMed ID: 8171007 [TBL] [Abstract][Full Text] [Related]
3. The solution structure of the Oct-1 POU-specific domain reveals a striking similarity to the bacteriophage lambda repressor DNA-binding domain. Assa-Munt N; Mortishire-Smith RJ; Aurora R; Herr W; Wright PE Cell; 1993 Apr; 73(1):193-205. PubMed ID: 8462099 [TBL] [Abstract][Full Text] [Related]
4. An invariant asparagine in the POU-specific homeodomain regulates the specificity of the Oct-2 POU motif. Botfield MC; Jancso A; Weiss MA Biochemistry; 1994 Jul; 33(26):8113-21. PubMed ID: 7912957 [TBL] [Abstract][Full Text] [Related]
5. Solution structure of a POU-specific homeodomain: 3D-NMR studies of human B-cell transcription factor Oct-2. Sivaraja M; Botfield MC; Mueller M; Jancso A; Weiss MA Biochemistry; 1994 Aug; 33(33):9845-55. PubMed ID: 7914745 [TBL] [Abstract][Full Text] [Related]
6. Solution structure of the POU-specific DNA-binding domain of Oct-1. Dekker N; Cox M; Boelens R; Verrijzer CP; van der Vliet PC; Kaptein R Nature; 1993 Apr; 362(6423):852-5. PubMed ID: 8479524 [TBL] [Abstract][Full Text] [Related]
7. Mapping critical residues in eukaryotic DNA-binding proteins: a plasmid-based genetic selection strategy with application to the Oct-2 POU motif. Botfield MC; Jancso A; Weiss MA Biochemistry; 1994 May; 33(20):6177-85. PubMed ID: 8193131 [TBL] [Abstract][Full Text] [Related]
8. Linker length and composition influence the flexibility of Oct-1 DNA binding. van Leeuwen HC; Strating MJ; Rensen M; de Laat W; van der Vliet PC EMBO J; 1997 Apr; 16(8):2043-53. PubMed ID: 9155030 [TBL] [Abstract][Full Text] [Related]
9. Solution structure of the Oct-1 POU homeodomain determined by NMR and restrained molecular dynamics. Cox M; van Tilborg PJ; de Laat W; Boelens R; van Leeuwen HC; van der Vliet PC; Kaptein R J Biomol NMR; 1995 Jul; 6(1):23-32. PubMed ID: 7663141 [TBL] [Abstract][Full Text] [Related]
10. The DNA binding specificity of the bipartite POU domain and its subdomains. Verrijzer CP; Alkema MJ; van Weperen WW; Van Leeuwen HC; Strating MJ; van der Vliet PC EMBO J; 1992 Dec; 11(13):4993-5003. PubMed ID: 1361172 [TBL] [Abstract][Full Text] [Related]
11. Secondary structure and interaction of phage D108 Ner repressor with a 61-base-pair operator: evidence for altered protein and DNA structures in the complex. Benevides JM; Kukolj G; Autexier C; Aubrey KL; DuBow MS; Thomas GJ Biochemistry; 1994 Sep; 33(35):10701-10. PubMed ID: 8075070 [TBL] [Abstract][Full Text] [Related]
12. How Cro and lambda-repressor distinguish between operators: the structural basis underlying a genetic switch. Albright RA; Matthews BW Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3431-6. PubMed ID: 9520383 [TBL] [Abstract][Full Text] [Related]
13. A comparative study of dynamic structures between phage 434 Cro and repressor proteins by normal mode analysis. Wako H; Tachikawa M; Ogawa A Proteins; 1996 Sep; 26(1):72-80. PubMed ID: 8880931 [TBL] [Abstract][Full Text] [Related]
14. Repetitive use of a phosphate-binding module in DNA polymerase beta, Oct-1 POU domain and phage repressors. Yura K; Shionyu M; Kawatani K; Go M Cell Mol Life Sci; 1999 Mar; 55(3):472-86. PubMed ID: 10228561 [TBL] [Abstract][Full Text] [Related]
15. DNA recognition by the helix-turn-helix motif: investigation by laser Raman spectroscopy of the phage lambda repressor and its interaction with operator sites OL1 and OR3. Benevides JM; Weiss MA; Thomas GJ Biochemistry; 1991 Jun; 30(24):5955-63. PubMed ID: 1828373 [TBL] [Abstract][Full Text] [Related]
16. Mechanisms for flexibility in DNA sequence recognition and VP16-induced complex formation by the Oct-1 POU domain. Cleary MA; Herr W Mol Cell Biol; 1995 Apr; 15(4):2090-100. PubMed ID: 7891704 [TBL] [Abstract][Full Text] [Related]
17. The POU-specific domain of Pit-1 is essential for sequence-specific, high affinity DNA binding and DNA-dependent Pit-1-Pit-1 interactions. Ingraham HA; Flynn SE; Voss JW; Albert VR; Kapiloff MS; Wilson L; Rosenfeld MG Cell; 1990 Jun; 61(6):1021-33. PubMed ID: 2350782 [TBL] [Abstract][Full Text] [Related]
18. Coactivator OBF-1 makes selective contacts with both the POU-specific domain and the POU homeodomain and acts as a molecular clamp on DNA. Sauter P; Matthias P Mol Cell Biol; 1998 Dec; 18(12):7397-409. PubMed ID: 9819426 [TBL] [Abstract][Full Text] [Related]
19. Biochemical characterization of the Oct-2 POU domain with implications for bipartite DNA recognition. Botfield MC; Jancso A; Weiss MA Biochemistry; 1992 Jun; 31(25):5841-8. PubMed ID: 1610826 [TBL] [Abstract][Full Text] [Related]