BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 8117723)

  • 1. Dynamics of the active loop of snake toxins as probed by time-resolved polarized tryptophan fluorescence.
    Blandin P; Mérola F; Brochon JC; Trémeau O; Ménez A
    Biochemistry; 1994 Mar; 33(9):2610-9. PubMed ID: 8117723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of refolding patterns of erabutoxin b and cardiotoxin 3.10.2 from snake venom.
    Agbaji AS
    Indian J Biochem Biophys; 1994 Feb; 31(1):20-3. PubMed ID: 8076968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The 1H nuclear-magnetic-resonance spectra of Neurotoxin I and cardiotoxin Vii4 from Naja mossambica mossambica.
    Lauterwein J; Lazdunski M; Wüthrich K
    Eur J Biochem; 1978 Dec; 92(2):361-71. PubMed ID: 33043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing local secondary structure by fluorescence: time-resolved and circular dichroism studies of highly purified neurotoxins.
    Dahms TE; Szabo AG
    Biophys J; 1995 Aug; 69(2):569-76. PubMed ID: 8527671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformation of two homologous neurotoxins. Fluorescence and circular dichroism studies.
    Ménez A; Montenay-Garestier T; Fromageot P; Hélène C
    Biochemistry; 1980 Nov; 19(23):5202-8. PubMed ID: 7448163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics of two homologous neurotoxins revealed by 1H-2H exchange: an infrared spectrometry study.
    Nabedryk-Viala E; Thiery C; Menez A; Tamiya N; Thiery JM
    Biochim Biophys Acta; 1980 Dec; 626(2):321-31. PubMed ID: 7213651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1.9-A resolution structure of fasciculin 1, an anti-acetylcholinesterase toxin from green mamba snake venom.
    le Du MH; Marchot P; Bougis PE; Fontecilla-Camps JC
    J Biol Chem; 1992 Nov; 267(31):22122-30. PubMed ID: 1429564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic structures of cardiotoxin 4 and cobrotoxin from Naja naja atra (Taiwan cobra).
    Chang LS; Lin J; Chou YC; Hong E
    Biochem Biophys Res Commun; 1997 Oct; 239(3):756-62. PubMed ID: 9367842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiotoxin III from the Taiwan cobra (Naja naja atra). Determination of structure in solution and comparison with short neurotoxins.
    Bhaskaran R; Huang CC; Chang DK; Yu C
    J Mol Biol; 1994 Jan; 235(4):1291-301. PubMed ID: 8308891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a locality in snake venom alpha-neurotoxins with a significant compositional similarity to marine snail alpha-conotoxins: implications for evolution and structure/activity.
    Dufton MJ; Bladon P; Harvey AL
    J Mol Evol; 1989 Oct; 29(4):355-66. PubMed ID: 2514275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A proton-magnetic-resonance study on the molecular conformation and structure-function relationship of a long neurotoxin, laticauda semifasciata III from Laticauda semifasciata.
    Inagaki F; Clayden NJ; Tamiya N; Williams RJ
    Eur J Biochem; 1981 Nov; 120(2):313-22. PubMed ID: 7318828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do cardiotoxins possess a functional site? Structural and chemical modification studies reveal the functional site of the cardiotoxin from Naja nigricollis.
    Ménez A; Gatineau E; Roumestand C; Harvey AL; Mouawad L; Gilquin B; Toma F
    Biochimie; 1990 Aug; 72(8):575-88. PubMed ID: 2126462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton NMR studies of the structural and dynamical effect of chemical modification of a single aromatic side-chain in a snake cardiotoxin. Relation to the structure of the putative binding site and the cytolytic activity of the toxin.
    Roumestand C; Gilquin B; Trémeau O; Gatineau E; Mouawad L; Ménez A; Toma F
    J Mol Biol; 1994 Nov; 243(4):719-35. PubMed ID: 7966292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Picosecond dynamics of a peptide from the acetylcholine receptor interacting with a neurotoxin probed by tailored tryptophan fluorescence.
    Chowdhury P; Gondry M; Genet R; Martin JL; Ménez A; Négrerie M; Petrich JW
    Photochem Photobiol; 2003 Feb; 77(2):151-7. PubMed ID: 12785053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of tyrosine and tryptophan residues in the structure-activity relationships of a cardiotoxin from Naja nigricollis venom.
    Gatineau E; Toma F; Montenay-Garestier T; Takechi M; Fromageot P; Ménez A
    Biochemistry; 1987 Dec; 26(25):8046-55. PubMed ID: 3442644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A case study of cardiotoxin III from the Taiwan cobra (Naja naja atra). Solution structure and other physical properties.
    Kumar TK; Lee CS; Yu C
    Adv Exp Med Biol; 1996; 391():115-29. PubMed ID: 8726052
    [No Abstract]   [Full Text] [Related]  

  • 17. Photochemically induced nuclear polarization study of exposed tyrosines, tryptophans, and histidines in postsynaptic neurotoxins and in membranotoxins of elapid and hydrophid snake venoms.
    Muszkat KA; Khait I; Hayashi K; Tamiya N
    Biochemistry; 1984 Oct; 23(21):4913-20. PubMed ID: 6498168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unfolding stabilities of two paralogous proteins from Naja naja naja (Indian cobra) as probed by molecular dynamics simulations.
    Gorai B; Sivaraman T
    Toxicon; 2013 Sep; 72():11-22. PubMed ID: 23791667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional structure of the RGD-containing neurotoxin homologue dendroaspin.
    Sutcliffe MJ; Jaseja M; Hyde EI; Lu X; Williams JA
    Nat Struct Biol; 1994 Nov; 1(11):802-7. PubMed ID: 7634091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Interaction of cardiotoxin A5 with a membrane: role of conformational heterogeneity and hydrophilic properties].
    Konshina AG; Volynskiĭ PE; Arsen'ev AS; Efremov RG
    Bioorg Khim; 2003; 29(6):577-88. PubMed ID: 14743531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.