These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 8117725)
1. Nativelike secondary structure in interleukin-1 beta inclusion bodies by attenuated total reflectance FTIR. Oberg K; Chrunyk BA; Wetzel R; Fink AL Biochemistry; 1994 Mar; 33(9):2628-34. PubMed ID: 8117725 [TBL] [Abstract][Full Text] [Related]
2. Distinct β-sheet structure in protein aggregates determined by ATR-FTIR spectroscopy. Shivu B; Seshadri S; Li J; Oberg KA; Uversky VN; Fink AL Biochemistry; 2013 Aug; 52(31):5176-83. PubMed ID: 23837615 [TBL] [Abstract][Full Text] [Related]
3. Structural analysis of protein inclusion bodies by Fourier transform infrared microspectroscopy. Ami D; Natalello A; Taylor G; Tonon G; Maria Doglia S Biochim Biophys Acta; 2006 Apr; 1764(4):793-9. PubMed ID: 16434245 [TBL] [Abstract][Full Text] [Related]
4. Inclusion body formation and protein stability in sequence variants of interleukin-1 beta. Chrunyk BA; Evans J; Lillquist J; Young P; Wetzel R J Biol Chem; 1993 Aug; 268(24):18053-61. PubMed ID: 8394358 [TBL] [Abstract][Full Text] [Related]
5. Structural characteristics and refolding of in vivo aggregated hyperthermophilic archaeon proteins. Umetsu M; Tsumoto K; Ashish K; Nitta S; Tanaka Y; Adschiri T; Kumagai I FEBS Lett; 2004 Jan; 557(1-3):49-56. PubMed ID: 14741340 [TBL] [Abstract][Full Text] [Related]
6. Impact of different cultivation and induction regimes on the structure of cytosolic inclusion bodies of TEM1-beta-lactamase. Margreiter G; Schwanninger M; Bayer K; Obinger C Biotechnol J; 2008 Oct; 3(9-10):1245-55. PubMed ID: 18702088 [TBL] [Abstract][Full Text] [Related]
7. Aggregation events occur prior to stable intermediate formation during refolding of interleukin 1beta. Finke JM; Roy M; Zimm BH; Jennings PA Biochemistry; 2000 Jan; 39(3):575-83. PubMed ID: 10642182 [TBL] [Abstract][Full Text] [Related]
8. New structural insights into the refolding of ribonuclease T1 as seen by time-resolved Fourier-transform infrared spectroscopy. Reinstädler D; Fabian H; Naumann D Proteins; 1999 Feb; 34(3):303-16. PubMed ID: 10024018 [TBL] [Abstract][Full Text] [Related]
9. Secondary structure and temperature-induced unfolding and refolding of ribonuclease T1 in aqueous solution. A Fourier transform infrared spectroscopic study. Fabian H; Schultz C; Naumann D; Landt O; Hahn U; Saenger W J Mol Biol; 1993 Aug; 232(3):967-81. PubMed ID: 8355280 [TBL] [Abstract][Full Text] [Related]
10. Spectroscopic study of secondary structure and thermal denaturation of recombinant human factor XIII in aqueous solution. Dong A; Kendrick B; Kreilgârd L; Matsuura J; Manning MC; Carpenter JF Arch Biochem Biophys; 1997 Nov; 347(2):213-20. PubMed ID: 9367527 [TBL] [Abstract][Full Text] [Related]
11. Structures of differently aggregated and precipitated forms of gamma B crystallin: an FTIR spectroscopic and EM study. Fatima U; Sharma S; Guptasarma P Protein Pept Lett; 2010 Sep; 17(9):1155-62. PubMed ID: 20394579 [TBL] [Abstract][Full Text] [Related]
12. Kinetics of inclusion body formation studied in intact cells by FT-IR spectroscopy. Ami D; Natalello A; Gatti-Lafranconi P; Lotti M; Doglia SM FEBS Lett; 2005 Jun; 579(16):3433-6. PubMed ID: 15949804 [TBL] [Abstract][Full Text] [Related]
13. Secondary structure characterization of beta-lactamase inclusion bodies. Przybycien TM; Dunn JP; Valax P; Georgiou G Protein Eng; 1994 Jan; 7(1):131-6. PubMed ID: 8140090 [TBL] [Abstract][Full Text] [Related]
14. Inclusion body formation by interleukin-1 beta depends on the thermal sensitivity of a folding intermediate. Wetzel R; Chrunyk BA FEBS Lett; 1994 Aug; 350(2-3):245-8. PubMed ID: 8070572 [TBL] [Abstract][Full Text] [Related]
15. Insufficient (sub-native) helix content in soluble/solid aggregates of recombinant and engineered forms of IL-2 throws light on how aggregated IL-2 is biologically active. Fatima U; Singh B; Subramanian K; Guptasarma P Protein J; 2012 Oct; 31(7):529-43. PubMed ID: 22791129 [TBL] [Abstract][Full Text] [Related]
16. Recombinant-phospholipase A2 production and architecture of inclusion bodies are affected by pH in Escherichia coli. Calcines-Cruz C; Olvera A; Castro-Acosta RM; Zavala G; Alagón A; Trujillo-Roldán MA; Valdez-Cruz NA Int J Biol Macromol; 2018 Mar; 108():826-836. PubMed ID: 29101045 [TBL] [Abstract][Full Text] [Related]
17. Refolding of thermally and urea-denatured ribonuclease A monitored by time-resolved FTIR spectroscopy. Reinstädler D; Fabian H; Backmann J; Naumann D Biochemistry; 1996 Dec; 35(49):15822-30. PubMed ID: 8961946 [TBL] [Abstract][Full Text] [Related]
18. Refolding and structural characteristic of TRAIL/Apo2L inclusion bodies from different specific growth rates of recombinant Escherichia coli. Kang H; Sun AY; Shen YL; Wei DZ Biotechnol Prog; 2007; 23(1):286-92. PubMed ID: 17269700 [TBL] [Abstract][Full Text] [Related]
19. Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli. Rinas U; Hoffmann F; Betiku E; Estapé D; Marten S J Biotechnol; 2007 Jan; 127(2):244-57. PubMed ID: 16945443 [TBL] [Abstract][Full Text] [Related]
20. [Effects of Freezing and Thawing Treatments on Beef Protein Secondary Structure Analyzed with ATR-FTIR]. Sun Z; Yang FW; Li X; Zhang CH; Xie XL Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3542-6. PubMed ID: 30198667 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]