BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 8117726)

  • 1. Influence of MgADP on phosphofructokinase from Escherichia coli. Elucidation of coupling interactions with both substrates.
    Johnson JL; Reinhart GD
    Biochemistry; 1994 Mar; 33(9):2635-43. PubMed ID: 8117726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MgATP and fructose 6-phosphate interactions with phosphofructokinase from Escherichia coli.
    Johnson JL; Reinhart GD
    Biochemistry; 1992 Nov; 31(46):11510-8. PubMed ID: 1445885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Equilibrium binding studies of a tryptophan-shifted mutant of phosphofructokinase from Bacillus stearothermophilus.
    Riley-Lovingshimer MR; Reinhart GD
    Biochemistry; 2001 Mar; 40(9):3002-8. PubMed ID: 11258913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Persistent binding of MgADP to the E187A mutant of Escherichia coli phosphofructokinase in the absence of allosteric effects.
    Pham AS; Janiak-Spens F; Reinhart GD
    Biochemistry; 2001 Apr; 40(13):4140-9. PubMed ID: 11300795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Failure of a two-state model to describe the influence of phospho(enol)pyruvate on phosphofructokinase from Escherichia coli.
    Johnson JL; Reinhart GD
    Biochemistry; 1997 Oct; 36(42):12814-22. PubMed ID: 9335538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MgATP-dependent activation by phosphoenolpyruvate of the E187A mutant of Escherichia coli phosphofructokinase.
    Pham AS; Reinhart GD
    Biochemistry; 2001 Apr; 40(13):4150-8. PubMed ID: 11300796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of substrates and MgADP on the time-resolved intrinsic fluorescence of phosphofructokinase from Escherichia coli. Correlation of tryptophan dynamics to coupling entropy.
    Johnson JL; Reinhart GD
    Biochemistry; 1994 Mar; 33(9):2644-50. PubMed ID: 8117727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Allosteric effects of carbamoyl phosphate synthetase from Escherichia coli are entropy-driven.
    Braxton BL; Mullins LS; Raushel FM; Reinhart GD
    Biochemistry; 1996 Sep; 35(36):11918-24. PubMed ID: 8794775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand-induced conformational transitions in Escherichia coli phosphofructokinase 2: evidence for an allosteric site for MgATP2-.
    Guixé V; Rodríguez PH; Babul J
    Biochemistry; 1998 Sep; 37(38):13269-75. PubMed ID: 9748334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing allosteric inhibition in Thermus thermophilus Phosphofructokinase.
    McGresham MS; Reinhart GD
    Biochemistry; 2015 Jan; 54(3):952-8. PubMed ID: 25531642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of substrate contact residues important for the allosteric regulation of phosphofructokinase from Eschericia coli.
    Fenton AW; Paricharttanakul NM; Reinhart GD
    Biochemistry; 2003 Jun; 42(21):6453-9. PubMed ID: 12767227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allosteric regulation in phosphofructokinase from the extreme thermophile Thermus thermophilus.
    McGresham MS; Lovingshimer M; Reinhart GD
    Biochemistry; 2014 Jan; 53(1):270-8. PubMed ID: 24328040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perturbation of the quaternary structure and allosteric behavior of rat liver phosphofructokinase by polyethylene glycol.
    Reinhart GD; Hartleip SB
    Arch Biochem Biophys; 1987 Oct; 258(1):65-76. PubMed ID: 2959201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow ligand-induced transitions in the allosteric phosphofructokinase from Escherichia coli.
    Auzat I; Gawlita E; Garel JR
    J Mol Biol; 1995 Jun; 249(2):478-92. PubMed ID: 7783204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disentangling the web of allosteric communication in a homotetramer: heterotropic activation in phosphofructokinase from Escherichia coli.
    Fenton AW; Paricharttanakul NM; Reinhart GD
    Biochemistry; 2004 Nov; 43(44):14104-10. PubMed ID: 15518560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Obfuscation of allosteric structure-function relationships by enthalpy-entropy compensation.
    Tlapak-Simmons VL; Reinhart GD
    Biophys J; 1998 Aug; 75(2):1010-5. PubMed ID: 9675201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic characteristics of phosphofructokinase from Bacillus stearothermophilus: MgATP nonallosterically inhibits the enzyme.
    Byrnes M; Zhu X; Younathan ES; Chang SH
    Biochemistry; 1994 Mar; 33(11):3424-31. PubMed ID: 8136379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examination of MgATP binding in a tryptophan-shift mutant of phosphofructokinase from Bacillus stearothermophilus.
    Riley-Lovingshimer MR; Reinhart GD
    Arch Biochem Biophys; 2005 Apr; 436(1):178-86. PubMed ID: 15752723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of ligands on the aggregation of the normal and mutant forms of phosphofructokinase 2 of Escherichia coli.
    Guixé V; Babul J
    Arch Biochem Biophys; 1988 Aug; 264(2):519-24. PubMed ID: 2969698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical modification of SH groups of E. coli phosphofructokinase-2 induces subunit dissociation: monomers are inactive but preserve ligand binding properties.
    Guixé V
    Arch Biochem Biophys; 2000 Apr; 376(2):313-9. PubMed ID: 10775417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.