These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 8117735)

  • 1. Evidence that the guanosine substrate of the Tetrahymena ribozyme is bound in the anti conformation and that N7 contributes to binding.
    Lin CW; Hanna M; Szostak JW
    Biochemistry; 1994 Mar; 33(9):2703-7. PubMed ID: 8117735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rearrangement of the guanosine-binding site establishes an extended network of functional interactions in the Tetrahymena group I ribozyme active site.
    Forconi M; Sengupta RN; Piccirilli JA; Herschlag D
    Biochemistry; 2010 Mar; 49(12):2753-62. PubMed ID: 20175542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site.
    Guo F; Gooding AR; Cech TR
    Mol Cell; 2004 Nov; 16(3):351-62. PubMed ID: 15525509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring purine N7 interactions via atomic mutagenesis: the group I ribozyme as a case study.
    Forconi M; Benz-Moy T; Gleitsman KR; Ruben E; Metz C; Herschlag D
    RNA; 2012 Jun; 18(6):1222-9. PubMed ID: 22543863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for processivity and two-step binding of the RNA substrate from studies of J1/2 mutants of the Tetrahymena ribozyme.
    Herschlag D
    Biochemistry; 1992 Feb; 31(5):1386-99. PubMed ID: 1736996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the role of metal ions in RNA catalysis: kinetic and thermodynamic characterization of a metal ion interaction with the 2'-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme.
    Shan SO; Herschlag D
    Biochemistry; 1999 Aug; 38(34):10958-75. PubMed ID: 10460151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 2'-hydroxyl group of the guanosine nucleophile donates a functionally important hydrogen bond in the tetrahymena ribozyme reaction.
    Hougland JL; Sengupta RN; Dai Q; Deb SK; Piccirilli JA
    Biochemistry; 2008 Jul; 47(29):7684-94. PubMed ID: 18572927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A kinetic and thermodynamic framework for the Azoarcus group I ribozyme reaction.
    Gleitsman KR; Herschlag DH
    RNA; 2014 Nov; 20(11):1732-46. PubMed ID: 25246656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations at the guanosine-binding site of the Tetrahymena ribozyme also affect site-specific hydrolysis.
    Legault P; Herschlag D; Celander DW; Cech TR
    Nucleic Acids Res; 1992 Dec; 20(24):6613-9. PubMed ID: 1480482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and function converge to identify a hydrogen bond in a group I ribozyme active site.
    Forconi M; Sengupta RN; Liu MC; Sartorelli AC; Piccirilli JA; Herschlag D
    Angew Chem Int Ed Engl; 2009; 48(39):7171-5. PubMed ID: 19708048
    [No Abstract]   [Full Text] [Related]  

  • 11. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing.
    Mei R; Herschlag D
    Biochemistry; 1996 May; 35(18):5796-809. PubMed ID: 8639540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conserved thermochemistry of guanosine nucleophile binding for structurally distinct group I ribozymes.
    Kuo LY; Cech TR
    Nucleic Acids Res; 1996 Oct; 24(19):3722-7. PubMed ID: 8871550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purine functional groups in essential residues of the hairpin ribozyme required for catalytic cleavage of RNA.
    Grasby JA; Mersmann K; Singh M; Gait MJ
    Biochemistry; 1995 Mar; 34(12):4068-76. PubMed ID: 7535099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the P7 region within the catalytic core of the Tetrahymena ribozyme by employing in vitro selection.
    Oe Y; Ikawa Y; Shiraishi H; Inoue T
    Nucleic Acids Symp Ser; 2000; (44):197-8. PubMed ID: 12903336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and biochemical application of 2'-O-methyl-3'-thioguanosine as a probe to explore group I intron catalysis.
    Lu J; Li NS; Sengupta RN; Piccirilli JA
    Bioorg Med Chem; 2008 May; 16(10):5754-60. PubMed ID: 18397828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exocyclic amine of the conserved G.U pair at the cleavage site of the Tetrahymena ribozyme contributes to 5'-splice site selection and transition state stabilization.
    Strobel SA; Cech TR
    Biochemistry; 1996 Jan; 35(4):1201-11. PubMed ID: 8573575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tertiary structure around the guanosine-binding site of the Tetrahymena ribozyme.
    Wang JF; Cech TR
    Science; 1992 Apr; 256(5056):526-9. PubMed ID: 1315076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of guanosine and 3' splice site analogues to a group I ribozyme: interactions with functional groups of guanosine and with additional nucleotides.
    Moran S; Kierzek R; Turner DH
    Biochemistry; 1993 May; 32(19):5247-56. PubMed ID: 8494902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A positive entropy change for guanosine binding and for the chemical step in the Tetrahymena ribozyme reaction.
    McConnell TS; Cech TR
    Biochemistry; 1995 Mar; 34(12):4056-67. PubMed ID: 7696271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalysis of RNA cleavage by a ribozyme derived from the group I intron of Anabaena pre-tRNA(Leu).
    Zaug AJ; Dávila-Aponte JA; Cech TR
    Biochemistry; 1994 Dec; 33(49):14935-47. PubMed ID: 7527660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.