These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 8118056)
1. Cultivar-specific elicitation of barley defense reactions by the phytotoxic peptide NIP1 from Rhynchosporium secalis. Hahn M; Jüngling S; Knogge W Mol Plant Microbe Interact; 1993; 6(6):745-54. PubMed ID: 8118056 [TBL] [Abstract][Full Text] [Related]
2. The race-specific elicitor, NIP1, from the barley pathogen, Rhynchosporium secalis, determines avirulence on host plants of the Rrs1 resistance genotype. Rohe M; Gierlich A; Hermann H; Hahn M; Schmidt B; Rosahl S; Knogge W EMBO J; 1995 Sep; 14(17):4168-77. PubMed ID: 7556057 [TBL] [Abstract][Full Text] [Related]
3. Molecular population genetic analysis differentiates two virulence mechanisms of the fungal avirulence gene NIP1. Schürch S; Linde CC; Knogge W; Jackson LF; McDonald BA Mol Plant Microbe Interact; 2004 Oct; 17(10):1114-25. PubMed ID: 15497404 [TBL] [Abstract][Full Text] [Related]
4. Heterologous expression of the avirulence gene product, NIP1, from the barley pathogen Rhynchosporium secalis. Gierlich A; van 't Slot KA; Li VM; Marie C; Hermann H; Knogge W Protein Expr Purif; 1999 Oct; 17(1):64-73. PubMed ID: 10497070 [TBL] [Abstract][Full Text] [Related]
5. Solution structure of the plant disease resistance-triggering protein NIP1 from the fungus Rhynchosporium secalis shows a novel beta-sheet fold. van't Slot KA; van den Burg HA; Kloks CP; Hilbers CW; Knogge W; Papavoine CH J Biol Chem; 2003 Nov; 278(46):45730-6. PubMed ID: 12944393 [TBL] [Abstract][Full Text] [Related]
6. A single binding site mediates resistance- and disease-associated activities of the effector protein NIP1 from the barley pathogen Rhynchosporium secalis. van't Slot KA; Gierlich A; Knogge W Plant Physiol; 2007 Jul; 144(3):1654-66. PubMed ID: 17478637 [TBL] [Abstract][Full Text] [Related]
7. Differential defense reactions in leaf tissues of barley in response to infection by Rhynchosporium secalis and to treatment with a fungal avirulence gene product. Steiner-Lange S; Fischer A; Boettcher A; Rouhara I; Liedgens H; Schmelzer E; Knogge W Mol Plant Microbe Interact; 2003 Oct; 16(10):893-902. PubMed ID: 14558691 [TBL] [Abstract][Full Text] [Related]
8. Defence-related gene activation during an incompatible interaction between Stagonospora (Septoria) nodorum and barley (Hordeum vulgare L.) coleoptile cells. Stevens C; Titarenko E; Hargreaves JA; Gurr SJ Plant Mol Biol; 1996 Jul; 31(4):741-9. PubMed ID: 8806405 [TBL] [Abstract][Full Text] [Related]
9. Allele characterization of genes required for rpg4-mediated wheat stem rust resistance identifies Rpg5 as the R gene. Arora D; Gross T; Brueggeman R Phytopathology; 2013 Nov; 103(11):1153-61. PubMed ID: 23841622 [TBL] [Abstract][Full Text] [Related]
11. Differential expression of pathogen-responsive genes encoding two types of glycine-rich proteins in barley. Molina A; Mena M; Carbonero P; García-Olmedo F Plant Mol Biol; 1997 Mar; 33(5):803-10. PubMed ID: 9106504 [TBL] [Abstract][Full Text] [Related]
12. Resistance to Rhynchosporium commune in a collection of European spring barley germplasm. Looseley ME; Griffe LL; Büttner B; Wright KM; Middlefell-Williams J; Bull H; Shaw PD; Macaulay M; Booth A; Schweizer G; Russell JR; Waugh R; Thomas WTB; Avrova A Theor Appl Genet; 2018 Dec; 131(12):2513-2528. PubMed ID: 30151748 [TBL] [Abstract][Full Text] [Related]
13. Characterisation of barley landraces from Syria and Jordan for resistance to rhynchosporium and identification of diagnostic markers for Rrs1 Looseley ME; Griffe LL; Büttner B; Wright KM; Bayer MM; Coulter M; Thauvin JN; Middlefell-Williams J; Maluk M; Okpo A; Kettles N; Werner P; Byrne E; Avrova A Theor Appl Genet; 2020 Apr; 133(4):1243-1264. PubMed ID: 31965232 [TBL] [Abstract][Full Text] [Related]
14. Identification of RAPD markers linked to a Rhynchosporium secalis resistance locus in barley using near-isogenic lines and bulked segregant analysis. Barua UM; Chalmers KJ; Hackett CA; Thomas WT; Powell W; Waugh R Heredity (Edinb); 1993 Aug; 71 ( Pt 2)():177-84. PubMed ID: 8376177 [TBL] [Abstract][Full Text] [Related]
15. The complex quantitative barley-Rhynchosporium secalis interaction: newly identified QTL may represent already known resistance genes. Wagner C; Schweizer G; Krämer M; Dehmer-Badani AG; Ordon F; Friedt W Theor Appl Genet; 2008 Dec; 118(1):113-22. PubMed ID: 18806993 [TBL] [Abstract][Full Text] [Related]
16. Isolation of fungal cell wall degrading proteins from barley (Hordeum vulgare L.) leaves infected with Rhynchosporium secalis. Zareie R; Melanson DL; Murphy PJ Mol Plant Microbe Interact; 2002 Oct; 15(10):1031-9. PubMed ID: 12437301 [TBL] [Abstract][Full Text] [Related]
17. Transformation of the plant pathogenic fungus, Rhynchosporium secalis. Rohe M; Searle J; Newton AC; Knogge W Curr Genet; 1996 May; 29(6):587-90. PubMed ID: 8662199 [TBL] [Abstract][Full Text] [Related]
18. Coevolution of host and pathogen populations in the Hordeum vulgare-Rhynchosporium secalis pathosystem. McDonald BA; McDermott JM; Allard RW; Webster RK Proc Natl Acad Sci U S A; 1989 May; 86(10):3924-7. PubMed ID: 2726757 [TBL] [Abstract][Full Text] [Related]
19. The origin and colonization history of the barley scald pathogen Rhynchosporium secalis. Brunner PC; Schürch S; McDonald BA J Evol Biol; 2007 Jul; 20(4):1311-21. PubMed ID: 17584226 [TBL] [Abstract][Full Text] [Related]
20. Construction of a YAC library from barley cultivar Franka and identification of YAC-derived markers linked to the Rh2 gene conferring resistance to scald (Rhynchosporium secalis). Schmidt D; Röder MS; Dargatz H; Wolf N; Schweizer GF; Tekauz A; Ganal MW Genome; 2001 Dec; 44(6):1031-40. PubMed ID: 11768206 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]