These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 8118842)
41. Leucosulfakinin, a sulfated insect neuropeptide with homology to gastrin and cholecystokinin. Nachman RJ; Holman GM; Haddon WF; Ling N Science; 1986 Oct; 234(4772):71-3. PubMed ID: 3749893 [TBL] [Abstract][Full Text] [Related]
42. Synthesis and biological evaluation of cholecystokinin analogs in which the Asp-Phe-NH2 moiety has been replaced by a 3-amino-7-phenylheptanoic acid or a 3-amino-6-(phenyloxy)hexanoic acid. Amblard M; Rodriguez M; Lignon MF; Galas MC; Bernad N; Artis-Noël AM; Hauad L; Laur J; Califano JC; Aumelas A J Med Chem; 1993 Oct; 36(20):3021-8. PubMed ID: 7692048 [TBL] [Abstract][Full Text] [Related]
43. Isolation from chicken antrum, and primary amino acid sequence of a novel 36-residue peptide of the gastrin/CCK family. Dimaline R; Young J; Gregory H FEBS Lett; 1986 Sep; 205(2):318-22. PubMed ID: 3743781 [TBL] [Abstract][Full Text] [Related]
44. Neuroanatomy and immunocytochemistry of the median neuroendocrine cells of the subesophageal ganglion of the tobacco hawkmoth, Manduca sexta: immunoreactivities to PBAN and other neuropeptides. Davis NT; Homberg U; Teal PE; Altstein M; Agricola HJ; Hildebrand JG Microsc Res Tech; 1996 Oct; 35(3):201-29. PubMed ID: 8956271 [TBL] [Abstract][Full Text] [Related]
45. Synthesis and binding affinities of cyclic and related linear analogues of CCK8 selective for central receptors. Charpentier B; Dor A; Roy P; England P; Pham H; Durieux C; Roques BP J Med Chem; 1989 Jun; 32(6):1184-90. PubMed ID: 2724293 [TBL] [Abstract][Full Text] [Related]
46. Dual peptidergic innervation of the blowfly hindgut: a light- and electron microscopic study of FMRFamide and proctolin immunoreactive fibers. Cantera R; Nässel DR Comp Biochem Physiol C Comp Pharmacol Toxicol; 1991; 99(3):517-25. PubMed ID: 1685428 [TBL] [Abstract][Full Text] [Related]
47. Callitachykinin I and II, two novel myotropic peptides isolated from the blowfly, Calliphora vomitoria, that have resemblances to tachykinins. Lundquist CT; Clottens FL; Holman GM; Nichols R; Nachman RJ; Nässel DR Peptides; 1994; 15(5):761-8. PubMed ID: 7984492 [TBL] [Abstract][Full Text] [Related]
48. LymnaDFamides, a new family of neuropeptides from the pond snail, Lymnaea stagnalis. Clue to cholecystokinin immunoreactivity in invertebrates? Johnsen AH; Rehfeld JF Eur J Biochem; 1993 Apr; 213(2):875-9. PubMed ID: 8477756 [TBL] [Abstract][Full Text] [Related]
49. Isolation, identification, and synthesis of a disulfated sulfakinin from the central nervous system of an arthropods the white shrimp Litopenaeus vannamei. Torfs P; Baggerman G; Meeusen T; Nieto J; Nachman RJ; Calderon J; De Loof A; Schoofs L Biochem Biophys Res Commun; 2002 Nov; 299(2):312-20. PubMed ID: 12437988 [TBL] [Abstract][Full Text] [Related]
50. Neural elements in the pineal complex of the frog, Rana esculenta, II: GABA-immunoreactive neurons and FMRFamide-immunoreactive efferent axons. Ekström P; Ostholm T; Meissl H; Bruun A; Richards JG; Möhler H Vis Neurosci; 1990 May; 4(5):399-412. PubMed ID: 2176814 [TBL] [Abstract][Full Text] [Related]
51. FMRFamide- and gastrin/CCK-like peptides in birds. Dockray GJ; Dimaline R Peptides; 1985; 6 Suppl 3():333-7. PubMed ID: 3913911 [TBL] [Abstract][Full Text] [Related]
52. Immunocytochemical mapping of neuronal pathways from brain to corpora cardiaca/corpora allata in the cockroach Diploptera punctata with antisera against Met-enkephalin-Arg6-Gly7-Leu8. Duve H; Thorpe A; Tobe SS Cell Tissue Res; 1991 Feb; 263(2):285-91. PubMed ID: 2007252 [TBL] [Abstract][Full Text] [Related]
53. Neurons in the cockroach nervous system reacting with antisera to the neuropeptide leucokinin I. Nässel DR; Cantera R; Karlsson A J Comp Neurol; 1992 Aug; 322(1):45-67. PubMed ID: 1430310 [TBL] [Abstract][Full Text] [Related]
54. Identification of the dipteran Leu-callatostatin peptide family: the pattern of precursor processing revealed by isolation studies in Calliphora vomitoria. Duve H; Johnsen AH; Maestro JL; Scott AG; East PD; Thorpe A Regul Pept; 1996 Nov; 67(1):11-9. PubMed ID: 8952000 [TBL] [Abstract][Full Text] [Related]
55. Insect satiety: sulfakinin localization and the effect of drosulfakinin on protein and carbohydrate ingestion in the blow fly, Phormia regina (Diptera: Calliphoridae). Downer KE; Haselton AT; Nachman RJ; Stoffolano JG J Insect Physiol; 2007 Jan; 53(1):106-12. PubMed ID: 17166511 [TBL] [Abstract][Full Text] [Related]
56. SCPB-and FMRFamide-like immunoreactivities in lobster neurons: colocalization of distinct peptides or colabeling of the same peptide(s)? Arbiser ZK; Beltz BS J Comp Neurol; 1991 Apr; 306(3):417-24. PubMed ID: 1865002 [TBL] [Abstract][Full Text] [Related]
57. Myoinhibitory peptide (MIP) immunoreactivity in the visual system of the blowfly Calliphora vomitoria in relation to putative clock neurons and serotonergic neurons. Kolodziejczyk A; Nässel DR Cell Tissue Res; 2011 Jul; 345(1):125-35. PubMed ID: 21660541 [TBL] [Abstract][Full Text] [Related]
58. Localization of pigment-dispersing hormone (PDH) immunoreactivity in the central nervous system of Carcinus maenas and Orconectes limosus (Crustacea), with reference to FMRFamide immunoreactivity in O. limosus. Mangerich S; Keller R Cell Tissue Res; 1988 Jul; 253(1):199-208. PubMed ID: 3416337 [TBL] [Abstract][Full Text] [Related]
59. Met-enkephalin Arg-Phe-immunoreactive neurons in the central nervous system of the pond snail Lymnaea stagnalis. Smith FG; Parish DC; Benjamin PR Cell Tissue Res; 1996 Mar; 283(3):479-91. PubMed ID: 8593677 [TBL] [Abstract][Full Text] [Related]
60. Proctolin-like immunoreactive neurons in the blowfly central nervous system. Nässel DR; O'shea M J Comp Neurol; 1987 Nov; 265(3):437-54. PubMed ID: 3693615 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]