These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62. Primary structure of murine major histocompatibility complex alloantigens: amino acid sequence of the amino-terminal one hundred and seventy-three residues of the H-2Kb glycoprotein. Uehara H; Ewenstein BM; Martinko JM; Nathenson SG; Coligan JE; Kindt TJ Biochemistry; 1980 Jan; 19(2):306-15. PubMed ID: 6986168 [TBL] [Abstract][Full Text] [Related]
63. Synthesis and biological activities of pseudopeptide analogues of the C-terminal heptapeptide of cholecystokinin. On the importance of the peptide bonds. Rodriguez M; Lignon MF; Galas MC; Fulcrand P; Mendre C; Aumelas A; Laur J; Martinez J J Med Chem; 1987 Aug; 30(8):1366-73. PubMed ID: 2441054 [TBL] [Abstract][Full Text] [Related]
64. Localization and identification of neurons with cholecystokinin and gastrin-like immunoreactivity in wholemounts of Aplysia ganglia. Ono JK Neuroscience; 1986 Aug; 18(4):957-74. PubMed ID: 3531915 [TBL] [Abstract][Full Text] [Related]
65. Structure of the sulfakinin cDNA and gene expression from the Mediterranean field cricket Gryllus bimaculatus. Meyering-Vos M; Müller A Insect Mol Biol; 2007 Aug; 16(4):445-54. PubMed ID: 17488300 [TBL] [Abstract][Full Text] [Related]
66. Acyl, pseudotetra-, tri- and dipeptide active-core analogs of insect neuropeptides. Nachman RJ; Holman GM; Hayes TK; Beier RC Int J Pept Protein Res; 1993 Oct; 42(4):372-7. PubMed ID: 8244632 [TBL] [Abstract][Full Text] [Related]
67. Cholecystokinin (CCK)/gastrin-like immunoreactive neurones in the cerebral ganglion of the protochordate ascidians Styela clava and Ascidiella aspersa. Thorndyke MC Regul Pept; 1982 Mar; 3(3-4):281-8. PubMed ID: 7043665 [TBL] [Abstract][Full Text] [Related]
68. Immunohistochemical evidence for different opioid systems in the rat superior cervical ganglion as revealed by imipramine treatment and receptor blockade. Folan JC; Heym C J Chem Neuroanat; 1989; 2(2):107-18. PubMed ID: 2574980 [TBL] [Abstract][Full Text] [Related]
69. FMRFamide gene and peptide expression during central nervous system development of the cephalopod mollusk, Idiosepius notoides. Wollesen T; Cummins SF; Degnan BM; Wanninger A Evol Dev; 2010; 12(2):113-30. PubMed ID: 20433453 [TBL] [Abstract][Full Text] [Related]
70. Distribution of FMRFamide-like immunoreactivity in the brain and neurohypophysis of the lamprey, Lampetra japonica. Ohtomi M; Fujii K; Kobayashi H Cell Tissue Res; 1989 Jun; 256(3):581-4. PubMed ID: 2743395 [TBL] [Abstract][Full Text] [Related]
71. Metamorphosis of identified neurons innervating thoracic neurohemal organs in the blowfly: transformation of cholecystokininlike immunoreactive neurons. Nässel DR; Ohlsson LG; Cantera R J Comp Neurol; 1988 Jan; 267(3):343-56. PubMed ID: 3343405 [TBL] [Abstract][Full Text] [Related]
72. Phylogeny of the cholecystokinin/gastrin family. Johnsen AH Front Neuroendocrinol; 1998 Apr; 19(2):73-99. PubMed ID: 9578981 [TBL] [Abstract][Full Text] [Related]
73. Immunocytochemical identification of alpha-endorphin-like material in neurones of the brain and corpus cardiacum of the blowfly, Calliphora vomitoria (Diptera). Duve H; Thorpe A Cell Tissue Res; 1983; 233(2):415-26. PubMed ID: 6137286 [TBL] [Abstract][Full Text] [Related]
74. Immunocytochemistry of GABA in the central complex of the locust Schistocerca gregaria: identification of immunoreactive neurons and colocalization with neuropeptides. Homberg U; Vitzthum H; Müller M; Binkle U J Comp Neurol; 1999 Jul; 409(3):495-507. PubMed ID: 10379833 [TBL] [Abstract][Full Text] [Related]
75. Sulfakinins influence lipid composition and insulin-like peptides level in oenocytes of Zophobas atratus beetles. Szymczak-Cendlak M; Gołębiowski M; Chowański S; Pacholska-Bogalska J; Marciniak P; Rosiński G; Słocińska M J Comp Physiol B; 2022 Jan; 192(1):15-25. PubMed ID: 34415387 [TBL] [Abstract][Full Text] [Related]
76. FMRFamidelike peptides of Homarus americanus: distribution, immunocytochemical mapping, and ultrastructural localization in terminal varicosities. Kobierski LA; Beltz BS; Trimmer BA; Kravitz EA J Comp Neurol; 1987 Dec; 266(1):1-15. PubMed ID: 3323267 [TBL] [Abstract][Full Text] [Related]
77. Isolation and characterization of authentic Phe-Met-Arg-Phe-NH2 and the novel Phe-Thr-Arg-Phe-NH2 peptide from Nereis diversicolor. Baratte B; Gras-Masse H; Ricart G; Bulet P; Dhainaut-Courtois N Eur J Biochem; 1991 Jun; 198(3):627-33. PubMed ID: 2050144 [TBL] [Abstract][Full Text] [Related]
78. Central neuronal pathways containing FLFQPQRFamide-like (morphine-modulating) peptides in the rat brain. Kivipelto L; Panula P Neuroscience; 1991; 41(1):137-48. PubMed ID: 2057058 [TBL] [Abstract][Full Text] [Related]
79. Cellular expression of the Drosophila melanogaster FMRFamide neuropeptide gene product DPKQDFMRFamide. Evidence for differential processing of the FMRFamide polypeptide precursor. Nichols R; McCormick J; Lim I; Caserta L J Mol Neurosci; 1995; 6(1):1-10. PubMed ID: 8562315 [TBL] [Abstract][Full Text] [Related]
80. FMRFamide-related peptides, partial serotonin depletion, and osmoregulation in Helisoma duryi (Mollusca: Pulmonata). Khan HR; Price DA; Doble KE; Greenberg MJ; Saleuddin AS J Comp Neurol; 1998 Mar; 393(1):25-33. PubMed ID: 9520098 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]