BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8119167)

  • 1. Purinergic receptor-mediated intracellular Ca2+ oscillations in chicken granulosa cells.
    Morley P; Vanderhyden BC; Tremblay R; Mealing GA; Durkin JP; Whitfield JF
    Endocrinology; 1994 Mar; 134(3):1269-76. PubMed ID: 8119167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of muscarinic cholinergic agonists on intracellular calcium and progesterone production by chicken granulosa cells.
    Morley P; Tsang BK; Whitfield JF; Schwartz JL
    Endocrinology; 1992 Feb; 130(2):663-70. PubMed ID: 1310278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of cholecystokinin on intracellular Ca2+, membrane-associated protein kinase-C activity, and progesterone production in chicken granulosa cells.
    Morley P; Wang J; Vanderhyden BC; Chakravarthy B; Durkin J; Whitefield JF
    Endocrinology; 1993 Nov; 133(5):1956-62. PubMed ID: 8404642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of tamoxifen on carbachol-triggered intracellular calcium responses in chicken granulosa cells.
    Morley P; Whitfield JF
    Cancer Res; 1994 Jan; 54(1):69-74. PubMed ID: 8261465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new, nongenomic estrogen action: the rapid release of intracellular calcium.
    Morley P; Whitfield JF; Vanderhyden BC; Tsang BK; Schwartz JL
    Endocrinology; 1992 Sep; 131(3):1305-12. PubMed ID: 1505465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. P2-purinoreceptor evoked changes in intracellular calcium oscillations in single isolated human granulosa-lutein cells.
    Lee PS; Squires PE; Buchan AM; Yuen BH; Leung PC
    Endocrinology; 1996 Sep; 137(9):3756-61. PubMed ID: 8756543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The differentiation inducer, dimethyl sulfoxide, transiently increases the intracellular calcium ion concentration in various cell types.
    Morley P; Whitfield JF
    J Cell Physiol; 1993 Aug; 156(2):219-25. PubMed ID: 8393876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of protein kinase C in the regulation of ATP-triggered intracellular Ca2+ oscillations in chicken granulosa cells.
    Morley P; Chakravarthy BR; Mealing GA; Tsang BK; Whitfield JF
    Eur J Endocrinol; 1996 Jun; 134(6):743-50. PubMed ID: 8766946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thapsigargin increases cytoplasmic free Ca2+ without influencing steroidogenesis in chicken granulosa cells.
    Morley P; Tsang BK; Whitfield JF; Schwartz JL
    Cell Calcium; 1992 Apr; 13(4):263-71. PubMed ID: 1586942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation of intracellular calcium concentration by adenosine triphosphate and uridine 5'-triphosphate in human term placental cells: evidence for purinergic receptors.
    Petit A; Bélisle S
    J Clin Endocrinol Metab; 1995 Jun; 80(6):1809-15. PubMed ID: 7775628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenosine triphosphate-evoked cytosolic calcium oscillations in human granulosa-luteal cells: role of protein kinase C.
    Tai CJ; Kang SK; Leung PC
    J Clin Endocrinol Metab; 2001 Feb; 86(2):773-7. PubMed ID: 11158045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the endoplasmic reticulum in shaping calcium dynamics in human lens cells.
    Williams MR; Riach RA; Collison DJ; Duncan G
    Invest Ophthalmol Vis Sci; 2001 Apr; 42(5):1009-17. PubMed ID: 11274079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the Ca2+ responses evoked by ATP and other nucleotides in mammalian brain astrocytes.
    Centemeri C; Bolego C; Abbracchio MP; Cattabeni F; Puglisi L; Burnstock G; Nicosia S
    Br J Pharmacol; 1997 Aug; 121(8):1700-6. PubMed ID: 9283706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of Ca2+ signaling and glucagon secretion in mouse pancreatic alpha-cells by extracellular ATP and purinergic receptors.
    Tudurí E; Filiputti E; Carneiro EM; Quesada I
    Am J Physiol Endocrinol Metab; 2008 May; 294(5):E952-60. PubMed ID: 18349114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Existence of P2-purinoceptors on human and porcine granulosa cells.
    Kamada S; Blackmore PF; Oehninger S; Gordon K; Hodgen GD
    J Clin Endocrinol Metab; 1994 Mar; 78(3):650-6. PubMed ID: 8126137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coexistence of purino- and pyrimidinoceptors on activated rat microglial cells.
    Nörenberg W; Cordes A; Blöhbaum G; Fröhlich R; Illes P
    Br J Pharmacol; 1997 Jul; 121(6):1087-98. PubMed ID: 9249243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of P2-purinergic receptors in rat Leydig cell steroidogenesis.
    Foresta C; Rossato M; Nogara A; Gottardello F; Bordon P; Di Virgilio F
    Biochem J; 1996 Dec; 320 ( Pt 2)(Pt 2):499-504. PubMed ID: 8973559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potentiation of ATP-induced Ca2+ mobilisation in human retinal pigment epithelial cells.
    Collison DJ; Tovell VE; Coombes LJ; Duncan G; Sanderson J
    Exp Eye Res; 2005 Apr; 80(4):465-75. PubMed ID: 15781274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular signalling by nucleotide receptors in PC12 pheochromocytoma cells.
    Raha S; de Souza LR; Reed JK
    J Cell Physiol; 1993 Mar; 154(3):623-30. PubMed ID: 8436608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular Ca2+ mobilization by thyrotropin, carbachol, and adenosine triphosphate in dog thyroid cells.
    Rani CS; Schilling WP; Field JB
    Endocrinology; 1989 Oct; 125(4):1889-97. PubMed ID: 2791972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.