These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 8119282)

  • 1. Effects of pH on carboxypeptidase-Y-catalyzed hydrolysis and aminolysis reactions.
    Christensen U
    Eur J Biochem; 1994 Feb; 220(1):149-53. PubMed ID: 8119282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of carboxypeptidase-Y-catalysed peptide semisynthesis.
    Christensen U; Drøhse HB; Mølgaard L
    Eur J Biochem; 1992 Dec; 210(2):467-73. PubMed ID: 1459131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the hydrolytic properties of (serine) carboxypeptidase Y.
    Stennicke HR; Mortensen UH; Breddam K
    Biochemistry; 1996 Jun; 35(22):7131-41. PubMed ID: 8679540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carboxypeptidase S-1 from Penicillium janthinellum: enzymatic properties in hydrolysis and aminolysis reactions.
    Breddam K
    Carlsberg Res Commun; 1988; 53(5):309-20. PubMed ID: 3256309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Action of serine carboxypeptidases on endopeptidase substrates, peptide-4-methyl-coumaryl-7-amides.
    Kunugi S; Fukuda M; Hayashi R
    Eur J Biochem; 1985 Nov; 153(1):37-40. PubMed ID: 3905405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic studies of carboxypeptidase Y. I. Kinetic parameters for the hydrolysis of synthetic substrates.
    Hayashi R; Bai Y; Hata T
    J Biochem; 1975 Jan; 77(1?):69-79. PubMed ID: 237004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic studies of carboxypeptidase Y from Saccharomyces cerevisiae. pH and pD profiles and inactivation at low pH (pD) values.
    Chang WT; Douglas KT
    Biochem J; 1980 Jun; 187(3):843-9. PubMed ID: 6765258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative modeling of substrate binding in the S1' subsite of serine carboxypeptidases from yeast, wheat, and human.
    Elsliger MA; Pshezhetsky AV; Vinogradova MV; Svedas VK; Potier M
    Biochemistry; 1996 Nov; 35(47):14899-909. PubMed ID: 8942654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A conserved glutamic acid bridge in serine carboxypeptidases, belonging to the alpha/beta hydrolase fold, acts as a pH-dependent protein-stabilizing element.
    Mortensen UH; Breddam K
    Protein Sci; 1994 May; 3(5):838-42. PubMed ID: 7914789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of introduced aspartic and glutamic acid residues on the P'1 substrate specificity, pH dependence and stability of carboxypeptidase Y.
    Stennicke HR; Mortensen UH; Christensen U; Remington SJ; Breddam K
    Protein Eng; 1994 Jul; 7(7):911-6. PubMed ID: 7971953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic characterization of carboxypeptidase-Y-catalyzed peptide semisynthesis Prediction of yields.
    Christensen U
    Amino Acids; 1994 Jun; 6(2):177-87. PubMed ID: 24190787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate recognition mechanism of carboxypeptidase Y.
    Nakase H; Murata S; Ueno H; Hayashi R
    Biosci Biotechnol Biochem; 2001 Nov; 65(11):2465-71. PubMed ID: 11791720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrates with charged P1 residues are efficiently hydrolyzed by serine carboxypeptidases when S3-P1 interactions are facilitated.
    Olesen K; Breddam K
    Biochemistry; 1997 Oct; 36(40):12235-41. PubMed ID: 9315861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of two serine carboxypeptidases from Aspergillus niger and their use in C-terminal sequencing of proteins and peptide synthesis.
    Dal Degan F; Ribadeau-Dumas B; Breddam K
    Appl Environ Microbiol; 1992 Jul; 58(7):2144-52. PubMed ID: 1637154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and dynamics of the metal site of cadmium-substituted carboxypeptidase A in solution and crystalline states and under steady-state peptide hydrolysis.
    Bauer R; Danielsen E; Hemmingsen L; Sorensen MV; Ulstrup J; Friis EP; Auld DS; Bjerrum MJ
    Biochemistry; 1997 Sep; 36(38):11514-24. PubMed ID: 9298972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maturation of isoprenylated proteins in Saccharomyces cerevisiae. Multiple activities catalyze the cleavage of the three carboxyl-terminal amino acids from farnesylated substrates in vitro.
    Hrycyna CA; Clarke S
    J Biol Chem; 1992 May; 267(15):10457-64. PubMed ID: 1587828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carboxypeptidase I from triticale grains and the hydrolysis of salt-soluble fractions of storage proteins.
    Drzymała A; Prabucka B; Bielawski W
    Plant Physiol Biochem; 2012 Sep; 58():195-204. PubMed ID: 22831920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The specificity of carboxypeptidase Y may be altered by changing the hydrophobicity of the S'1 binding pocket.
    Sørensen SB; Breddam K
    Protein Sci; 1997 Oct; 6(10):2227-32. PubMed ID: 9336845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2.8-A structure of yeast serine carboxypeptidase.
    Endrizzi JA; Breddam K; Remington SJ
    Biochemistry; 1994 Sep; 33(37):11106-20. PubMed ID: 7727362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide enzymatic microsynthesis, using carboxypeptidase Y as the catalyst: application to stepwise synthesis of Leuenkephalin.
    Hellio F; Gueguen P; Morgat JL
    Biochimie; 1988 Jun; 70(6):791-802. PubMed ID: 3139095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.