These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 8119980)

  • 1. Mutagenic investigation of conserved functional amino acids in Escherichia coli L-aspartase.
    Saribaş AS; Schindler JF; Viola RE
    J Biol Chem; 1994 Mar; 269(9):6313-9. PubMed ID: 8119980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and over-expression of thermostable Bacillus sp. YM55-1 aspartase and site-directed mutagenesis for probing a catalytic residue.
    Kawata Y; Tamura K; Kawamura M; Ikei K; Mizobata T; Nagai J; Fujita M; Yano S; Tokushige M; Yumoto N
    Eur J Biochem; 2000 Mar; 267(6):1847-57. PubMed ID: 10712618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of aspartase by site-directed mutagenesis.
    Murase S; Takagi JS; Higashi Y; Imaishi H; Yumoto N; Tokushige M
    Biochem Biophys Res Commun; 1991 May; 177(1):414-9. PubMed ID: 2043125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elimination of the sensitivity of L-aspartase to active-site-directed inactivation without alteration of catalytic activity.
    Giorgianni F; Beranová S; Wesdemiotis C; Viola RE
    Biochemistry; 1995 Mar; 34(11):3529-35. PubMed ID: 7893648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-directed mutagenesis, kinetic and inhibition studies of aspartate ammonia lyase from Bacillus sp. YM55-1.
    Puthan Veetil V; Raj H; Quax WJ; Janssen DB; Poelarends GJ
    FEBS J; 2009 Jun; 276(11):2994-3007. PubMed ID: 19490103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of thermostable aspartase from Bacillus sp. YM55-1: structure-based exploration of functional sites in the aspartase family.
    Fujii T; Sakai H; Kawata Y; Hata Y
    J Mol Biol; 2003 May; 328(3):635-54. PubMed ID: 12706722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of the stability and activity of aspartase by random and site-directed mutagenesis.
    Zhang HY; Zhang J; Lin L; Du WY; Lu J
    Biochem Biophys Res Commun; 1993 Apr; 192(1):15-21. PubMed ID: 8476416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The phylogenetically conserved histidines of Escherichia coli porphobilinogen synthase are not required for catalysis.
    Mitchell LW; Volin M; Jaffe EK
    J Biol Chem; 1995 Oct; 270(41):24054-9. PubMed ID: 7592604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The function of arginine 363 as the substrate carboxyl-binding site in Escherichia coli serine hydroxymethyltransferase.
    Delle Fratte S; Iurescia S; Angelaccio S; Bossa F; Schirch V
    Eur J Biochem; 1994 Oct; 225(1):395-401. PubMed ID: 7925461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-step purification and characterization of recombinant aspartase of Aeromonas media NFB-5.
    Singh RS; Yadav M
    Appl Biochem Biotechnol; 2012 Jul; 167(5):991-1001. PubMed ID: 22328292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. L-aspartase: new tricks from an old enzyme.
    Viola RE
    Adv Enzymol Relat Areas Mol Biol; 2000; 74():295-341. PubMed ID: 10800598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic studies of L-aspartase from Escherichia coli: pH-dependent activity changes.
    Karsten WE; Viola RE
    Arch Biochem Biophys; 1991 May; 287(1):60-7. PubMed ID: 1897995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic studies of L-aspartase from Escherichia coli: substrate activation.
    Karsten WE; Gates RB; Viola RE
    Biochemistry; 1986 Mar; 25(6):1299-303. PubMed ID: 3516219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aspartase/fumarase superfamily: a common catalytic strategy involving general base-catalyzed formation of a highly stabilized aci-carboxylate intermediate.
    Puthan Veetil V; Fibriansah G; Raj H; Thunnissen AM; Poelarends GJ
    Biochemistry; 2012 May; 51(21):4237-43. PubMed ID: 22551392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of strictly conserved histidine and arginine residues as part of the active site in Petunia hybrida flavanone 3beta-hydroxylase.
    Lukacin R; Britsch L
    Eur J Biochem; 1997 Nov; 249(3):748-57. PubMed ID: 9395322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of catalytic activity by gene truncation: activation of L-aspartase from Escherichia coli.
    Jayasekera MM; Saribaş AS; Viola RE
    Biochem Biophys Res Commun; 1997 Sep; 238(2):411-4. PubMed ID: 9299522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of functionally important amino acids in L-aspartate ammonia-lyase from Escherichia coli.
    Jayasekera MM; Shi W; Farber GK; Viola RE
    Biochemistry; 1997 Jul; 36(30):9145-50. PubMed ID: 9230046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histidine-450 is the catalytic residue of L-3-hydroxyacyl coenzyme A dehydrogenase associated with the large alpha-subunit of the multienzyme complex of fatty acid oxidation from Escherichia coli.
    He XY; Yang SY
    Biochemistry; 1996 Jul; 35(29):9625-30. PubMed ID: 8755745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of three types of aspartase activated by site-directed mutagenesis, limited proteolysis, and acetylation.
    Murase S; Yumoto N
    J Biochem; 1993 Nov; 114(5):735-9. PubMed ID: 8113229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the subunit contact region of aspartase.
    Yumoto N; Murase S; Imaishi H; Tokushige M
    Biochem Int; 1992 Nov; 28(3):413-22. PubMed ID: 1482385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.