These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 8119980)
21. Thermostable farnesyl diphosphate synthase of Bacillus stearothermophilus: crystallization and site-directed mutagenesis. Koyama T; Obata S; Osabe M; Saito K; Takeshita A; Nishino T; Ogura K Acta Biochim Pol; 1994; 41(3):281-92. PubMed ID: 7856399 [TBL] [Abstract][Full Text] [Related]
22. Studies on aspartase. II. Role of sulfhydryl groups in aspartase from Escherichia coli. Mizuta K; Tokushige M Biochim Biophys Acta; 1975 Sep; 403(1):221-31. PubMed ID: 240429 [TBL] [Abstract][Full Text] [Related]
23. L-aspartase from Escherichia coli: substrate specificity and role of divalent metal ions. Falzone CJ; Karsten WE; Conley JD; Viola RE Biochemistry; 1988 Dec; 27(26):9089-93. PubMed ID: 2853974 [TBL] [Abstract][Full Text] [Related]
25. Alteration of substrate specificity of aspartase by directed evolution. Asano Y; Kira I; Yokozeki K Biomol Eng; 2005 Jun; 22(1-3):95-101. PubMed ID: 15857789 [TBL] [Abstract][Full Text] [Related]
26. Studies on aspartase. III. Alteration of enzymatic properties upon trypsin-mediated activation. Mizuta K; Tokushige M Biochim Biophys Acta; 1976 Nov; 452(1):253-61. PubMed ID: 10995 [TBL] [Abstract][Full Text] [Related]
27. Assignment of catalytically essential cysteine residues in aspartase by selective chemical modification with N-(7-dimethylamino-4-methylcoumarynyl)maleimide. Ida N; Tokushige M J Biochem; 1985 Sep; 98(3):793-7. PubMed ID: 3910645 [TBL] [Abstract][Full Text] [Related]
28. The quinone-binding site in succinate-ubiquinone reductase from Escherichia coli. Quinone-binding domain and amino acid residues involved in quinone binding. Yang X; Yu L; He D; Yu CA J Biol Chem; 1998 Nov; 273(48):31916-23. PubMed ID: 9822661 [TBL] [Abstract][Full Text] [Related]
29. Alteration by site-directed mutagenesis of the conserved lysine residue in the ATP-binding consensus sequence of the RecD subunit of the Escherichia coli RecBCD enzyme. Korangy F; Julin DA J Biol Chem; 1992 Jan; 267(3):1727-32. PubMed ID: 1730715 [TBL] [Abstract][Full Text] [Related]
30. The multisubunit active site of fumarase C from Escherichia coli. Weaver TM; Levitt DG; Donnelly MI; Stevens PP; Banaszak LJ Nat Struct Biol; 1995 Aug; 2(8):654-62. PubMed ID: 7552727 [TBL] [Abstract][Full Text] [Related]
31. Mapping the mechanism-based modification sites in L-aspartase from Escherichia coli. Giorgianni F; Beranová S; Wesdemiotis C; Viola RE Arch Biochem Biophys; 1997 May; 341(2):329-36. PubMed ID: 9169023 [TBL] [Abstract][Full Text] [Related]
32. HlyC, the internal protein acyltransferase that activates hemolysin toxin: role of conserved histidine, serine, and cysteine residues in enzymatic activity as probed by chemical modification and site-directed mutagenesis. Trent MS; Worsham LM; Ernst-Fonberg ML Biochemistry; 1999 Mar; 38(11):3433-9. PubMed ID: 10079090 [TBL] [Abstract][Full Text] [Related]
33. The activity of Escherichia coli dihydroorotate dehydrogenase is dependent on a conserved loop identified by sequence homology, mutagenesis, and limited proteolysis. Björnberg O; Grüner AC; Roepstorff P; Jensen KF Biochemistry; 1999 Mar; 38(10):2899-908. PubMed ID: 10074342 [TBL] [Abstract][Full Text] [Related]
34. Arginine 54 in the active site of Escherichia coli aspartate transcarbamoylase is critical for catalysis: a site-specific mutagenesis, NMR, and X-ray crystallographic study. Stebbins JW; Robertson DE; Roberts MF; Stevens RC; Lipscomb WN; Kantrowitz ER Protein Sci; 1992 Nov; 1(11):1435-46. PubMed ID: 1303763 [TBL] [Abstract][Full Text] [Related]
35. Site-directed mutagenesis of two highly conserved residues near the active site of phosphofructo-1-kinase. Zheng RL; Kemp RG Biochem Biophys Res Commun; 1994 Mar; 199(2):577-81. PubMed ID: 8135798 [TBL] [Abstract][Full Text] [Related]
36. Characterization of intermediate species during the molecular assembly of aspartase. Imaishi H; Yumoto N; Tokushige M Physiol Chem Phys Med NMR; 1989; 21(3):221-8. PubMed ID: 2699932 [TBL] [Abstract][Full Text] [Related]
37. Stimulation of Erwinia sp. fumarase and aspartase synthesis by changing medium components. Bagdasaryan ZN; Aleksanyan GA; Mirzoyan AM; Roseiro JC; Bagdasaryan SN Appl Biochem Biotechnol; 2005 May; 125(2):113-26. PubMed ID: 15858235 [TBL] [Abstract][Full Text] [Related]
39. The NAD-glycohydrolase activity of the pertussis toxin S1 subunit. Involvement of the catalytic HIS-35 residue. Antoine R; Locht C J Biol Chem; 1994 Mar; 269(9):6450-7. PubMed ID: 8119996 [TBL] [Abstract][Full Text] [Related]
40. Duck liver 'malic' enzyme. Expression in Escherichia coli and characterization of the wild-type enzyme and site-directed mutants. Hsu RY; Glynias MJ; Satterlee J; Feeney R; Clarke AR; Emery DC; Roe BA; Wilson RK; Goodridge AG; Holbrook JJ Biochem J; 1992 Jun; 284 ( Pt 3)(Pt 3):869-76. PubMed ID: 1622402 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]