These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 8119982)
1. Uncoupled steps of the colicin A pore formation demonstrated by disulfide bond engineering. Duché D; Parker MW; González-Mañas JM; Pattus F; Baty D J Biol Chem; 1994 Mar; 269(9):6332-9. PubMed ID: 8119982 [TBL] [Abstract][Full Text] [Related]
2. Membrane topology of the colicin A pore-forming domain analyzed by disulfide bond engineering. Duché D; Izard J; González-Mañas JM; Parker MW; Crest M; Chartier M; Baty D J Biol Chem; 1996 Jun; 271(26):15401-6. PubMed ID: 8663026 [TBL] [Abstract][Full Text] [Related]
3. A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1. Elkins P; Bunker A; Cramer WA; Stauffacher CV Structure; 1997 Mar; 5(3):443-58. PubMed ID: 9083117 [TBL] [Abstract][Full Text] [Related]
4. Identification of channel-lining amino acid residues in the hydrophobic segment of colicin Ia. Kienker PK; Jakes KS; Finkelstein A J Gen Physiol; 2008 Dec; 132(6):693-707. PubMed ID: 19029376 [TBL] [Abstract][Full Text] [Related]
5. Intramembrane helix-helix interactions as the basis of inhibition of the colicin E1 ion channel by its immunity protein. Zhang YL; Cramer WA J Biol Chem; 1993 May; 268(14):10176-84. PubMed ID: 7683669 [TBL] [Abstract][Full Text] [Related]
6. Topology of the amphipathic helices of the colicin A pore-forming domain in E. coli lipid membranes studied by pulse EPR. Böhme S; Padmavathi PV; Holterhues J; Ouchni F; Klare JP; Steinhoff HJ Phys Chem Chem Phys; 2009 Aug; 11(31):6770-7. PubMed ID: 19639151 [TBL] [Abstract][Full Text] [Related]
7. Membrane partitioning of the pore-forming domain of colicin A. Role of the hydrophobic helical hairpin. Bermejo IL; Arnulphi C; Ibáñez de Opakua A; Alonso-Mariño M; Goñi FM; Viguera AR Biophys J; 2013 Sep; 105(6):1432-43. PubMed ID: 24047995 [TBL] [Abstract][Full Text] [Related]
8. Fluorescence energy transfer distance measurements. The hydrophobic helical hairpin of colicin A in the membrane bound state. Lakey JH; Duché D; González-Mañas JM; Baty D; Pattus F J Mol Biol; 1993 Apr; 230(3):1055-67. PubMed ID: 7683055 [TBL] [Abstract][Full Text] [Related]
9. Constraints imposed by protease accessibility on the trans-membrane and surface topography of the colicin E1 ion channel. Zhang YL; Cramer WA Protein Sci; 1992 Dec; 1(12):1666-76. PubMed ID: 1284805 [TBL] [Abstract][Full Text] [Related]
10. Evidence for the amphipathic nature and tilted topology of helices 4 and 5 in the closed state of the colicin E1 channel. Ho D; Merrill AR Biochemistry; 2009 Feb; 48(6):1369-80. PubMed ID: 19159330 [TBL] [Abstract][Full Text] [Related]
11. Unfolding of colicin A during its translocation through the Escherichia coli envelope as demonstrated by disulfide bond engineering. Duché D; Baty D; Chartier M; Letellier L J Biol Chem; 1994 Oct; 269(40):24820-5. PubMed ID: 7929161 [TBL] [Abstract][Full Text] [Related]
12. Immunity protein release from a cell-bound nuclease colicin complex requires global conformational rearrangement. Vankemmelbeke M; Housden NG; James R; Kleanthous C; Penfold CN Microbiologyopen; 2013 Oct; 2(5):853-61. PubMed ID: 24039240 [TBL] [Abstract][Full Text] [Related]
13. The C-terminal half of the colicin A pore-forming domain is active in vivo and in vitro. Nardi A; Slatin SL; Baty D; Duché D J Mol Biol; 2001 Apr; 307(5):1293-303. PubMed ID: 11292342 [TBL] [Abstract][Full Text] [Related]
14. Acidic pH-induced membrane insertion of colicin A into E. coli natural lipids probed by site-directed spin labeling. Pulagam LP; Steinhoff HJ J Mol Biol; 2013 May; 425(10):1782-94. PubMed ID: 23399545 [TBL] [Abstract][Full Text] [Related]
15. Fluorescence energy transfer distance measurements using site-directed single cysteine mutants. The membrane insertion of colicin A. Lakey JH; Baty D; Pattus F J Mol Biol; 1991 Apr; 218(3):639-53. PubMed ID: 2016750 [TBL] [Abstract][Full Text] [Related]
16. Site-specific biotinylation of colicin Ia. A probe for protein conformation in the membrane. Qiu XQ; Jakes KS; Finkelstein A; Slatin SL J Biol Chem; 1994 Mar; 269(10):7483-8. PubMed ID: 8125966 [TBL] [Abstract][Full Text] [Related]
17. On the explanation of the acidic pH requirement for in vitro activity of colicin E1. Site-directed mutagenesis at Glu-468. Shiver JW; Cramer WA; Cohen FS; Bishop LJ; de Jong PJ J Biol Chem; 1987 Oct; 262(29):14273-81. PubMed ID: 2443503 [TBL] [Abstract][Full Text] [Related]
18. Dynamic transitions of the transmembrane domain of diphtheria toxin: disulfide trapping and fluorescence proximity studies. Zhan H; Choe S; Huynh PD; Finkelstein A; Eisenberg D; Collier RJ Biochemistry; 1994 Sep; 33(37):11254-63. PubMed ID: 7537085 [TBL] [Abstract][Full Text] [Related]
19. The channel domain of colicin A is inhibited by its immunity protein through direct interaction in the Escherichia coli inner membrane. Espesset D; Duché D; Baty D; Géli V EMBO J; 1996 May; 15(10):2356-64. PubMed ID: 8665842 [TBL] [Abstract][Full Text] [Related]
20. Conformation of the closed channel state of colicin A in proteoliposomes: an umbrella model. Padmavathi PV; Steinhoff HJ J Mol Biol; 2008 Apr; 378(1):204-14. PubMed ID: 18353363 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]