These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 8120245)

  • 1. A computational model of the auditory periphery for speech and hearing research. II. Descending paths.
    Giguère C; Woodland PC
    J Acoust Soc Am; 1994 Jan; 95(1):343-9. PubMed ID: 8120245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational model of the auditory periphery for speech and hearing research. I. Ascending path.
    Giguère C; Woodland PC
    J Acoust Soc Am; 1994 Jan; 95(1):331-42. PubMed ID: 8120244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of Efferent Reflexes in the Efficient Encoding of Speech by the Auditory Nerve.
    Grange J; Zhang M; Culling J
    J Neurosci; 2022 Sep; 42(36):6907-6916. PubMed ID: 35882559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimasking effects of the olivocochlear reflex. I. Enhancement of compound action potentials to masked tones.
    Kawase T; Liberman MC
    J Neurophysiol; 1993 Dec; 70(6):2519-32. PubMed ID: 8120596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speech-in-noise intelligibility does not correlate with efferent olivocochlear reflex in humans with normal hearing.
    Wagner W; Frey K; Heppelmann G; Plontke SK; Zenner HP
    Acta Otolaryngol; 2008 Jan; 128(1):53-60. PubMed ID: 17851961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimasking effects of the olivocochlear reflex. II. Enhancement of auditory-nerve response to masked tones.
    Kawase T; Delgutte B; Liberman MC
    J Neurophysiol; 1993 Dec; 70(6):2533-49. PubMed ID: 8120597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computer model of auditory efferent suppression: implications for the recognition of speech in noise.
    Brown GJ; Ferry RT; Meddis R
    J Acoust Soc Am; 2010 Feb; 127(2):943-54. PubMed ID: 20136217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the time-varying and level-dependent effects of the medial olivocochlear reflex in auditory nerve responses.
    Smalt CJ; Heinz MG; Strickland EA
    J Assoc Res Otolaryngol; 2014 Apr; 15(2):159-73. PubMed ID: 24306278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An auditory-periphery model of the effects of acoustic trauma on auditory nerve responses.
    Bruce IC; Sachs MB; Young ED
    J Acoust Soc Am; 2003 Jan; 113(1):369-88. PubMed ID: 12558276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Mechanism of hearing. I. Efferent system of innervation of the organ of Corti].
    Sliwińska-Kowalska M; Sułkowski W
    Otolaryngol Pol; 1993; 47(4):361-7. PubMed ID: 8255591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling normal and impaired hearing: implications for hearing aid design.
    Kates JM
    Ear Hear; 1991 Dec; 12(6 Suppl):162S-176S. PubMed ID: 1794643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A composite model of the auditory periphery for the processing of speech based on the filter response functions of single auditory-nerve fibers.
    Jenison RL; Greenberg S; Kluender KR; Rhode WS
    J Acoust Soc Am; 1991 Aug; 90(2 Pt 1):773-86. PubMed ID: 1939884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abnormalities in auditory efferent activities in children with selective mutism.
    Muchnik C; Ari-Even Roth D; Hildesheimer M; Arie M; Bar-Haim Y; Henkin Y
    Audiol Neurootol; 2013; 18(6):353-61. PubMed ID: 24107432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of GABAB receptors in cochlear neurons: threshold elevation suggests modulation of outer hair cell function by type II afferent fibers.
    Maison SF; Casanova E; Holstein GR; Bettler B; Liberman MC
    J Assoc Res Otolaryngol; 2009 Mar; 10(1):50-63. PubMed ID: 18925381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encoding of amplitude modulation in the cochlear nucleus of the cat.
    Rhode WS; Greenberg S
    J Neurophysiol; 1994 May; 71(5):1797-825. PubMed ID: 8064349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of outer hair cells in cochlear function.
    Dallos P
    Prog Clin Biol Res; 1985; 176():207-30. PubMed ID: 3889930
    [No Abstract]   [Full Text] [Related]  

  • 17. A biophysical model of cochlear processing: intensity dependence of pure tone responses.
    Shamma SA; Chadwick RS; Wilbur WJ; Morrish KA; Rinzel J
    J Acoust Soc Am; 1986 Jul; 80(1):133-45. PubMed ID: 3745659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of delayed auditory feedback (DAF) on the pitch-shift reflex.
    Hain TC; Burnett TA; Larson CR; Kiran S
    J Acoust Soc Am; 2001 May; 109(5 Pt 1):2146-52. PubMed ID: 11386566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the identification of concurrent vowels with different fundamental frequencies.
    Meddis R; Hewitt MJ
    J Acoust Soc Am; 1992 Jan; 91(1):233-45. PubMed ID: 1737874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing cochlear mechano-electric transduction with a nonlinear system identification technique: the influence of the middle ear.
    Choi CH; Chertoff ME; Yi X
    J Acoust Soc Am; 2002 Dec; 112(6):2898-909. PubMed ID: 12509011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.