These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 8120246)
1. A piezoelectric model of outer hair cell function. Mountain DC; Hubbard AE J Acoust Soc Am; 1994 Jan; 95(1):350-4. PubMed ID: 8120246 [TBL] [Abstract][Full Text] [Related]
2. Nonlinearity of mechanoelectrical transduction of outer hair cells as the source of nonlinear basilar-membrane motion and loudness recruitment. Preyer S; Gummer AW Audiol Neurootol; 1996; 1(1):3-11. PubMed ID: 9390786 [TBL] [Abstract][Full Text] [Related]
3. Outer hair cell active force generation in the cochlear environment. Liao Z; Feng S; Popel AS; Brownell WE; Spector AA J Acoust Soc Am; 2007 Oct; 122(4):2215-25. PubMed ID: 17902857 [TBL] [Abstract][Full Text] [Related]
4. Mechanical transduction in outer hair cells. Gummer AW; Meyer J; Frank G; Scherer MP; Preyer S Audiol Neurootol; 2002; 7(1):13-6. PubMed ID: 11914519 [TBL] [Abstract][Full Text] [Related]
5. Outer hair cell electromechanical properties in a nonlinear piezoelectric model. Liu YW; Neely ST J Acoust Soc Am; 2009 Aug; 126(2):751-61. PubMed ID: 19640041 [TBL] [Abstract][Full Text] [Related]
6. Effect of current stimulus on in vivo cochlear mechanics. Parthasarathi AA; Grosh K; Zheng J; Nuttall AL J Acoust Soc Am; 2003 Jan; 113(1):442-52. PubMed ID: 12558281 [TBL] [Abstract][Full Text] [Related]
7. High-frequency force generation in the constrained cochlear outer hair cell: a model study. Liao Z; Popel AS; Brownell WE; Spector AA J Assoc Res Otolaryngol; 2005 Dec; 6(4):378-89. PubMed ID: 16237583 [TBL] [Abstract][Full Text] [Related]
8. Relationship between basilar membrane tuning and hair cell condition. Khanna SM; Leonard DG Hear Res; 1986; 23(1):55-70. PubMed ID: 3733552 [TBL] [Abstract][Full Text] [Related]
11. Optimal electrical properties of outer hair cells ensure cochlear amplification. Nam JH; Fettiplace R PLoS One; 2012; 7(11):e50572. PubMed ID: 23209783 [TBL] [Abstract][Full Text] [Related]
12. A computational model of the auditory periphery for speech and hearing research. I. Ascending path. Giguère C; Woodland PC J Acoust Soc Am; 1994 Jan; 95(1):331-42. PubMed ID: 8120244 [TBL] [Abstract][Full Text] [Related]
13. Response to a pure tone in a nonlinear mechanical-electrical-acoustical model of the cochlea. Meaud J; Grosh K Biophys J; 2012 Mar; 102(6):1237-46. PubMed ID: 22455906 [TBL] [Abstract][Full Text] [Related]
15. Cochlear function: hearing in the fast lane. Ashmore J; Géléoc GS Curr Biol; 1999 Jul 29-Aug 12; 9(15):R572-4. PubMed ID: 10469559 [TBL] [Abstract][Full Text] [Related]
16. Half-octave shift in mammalian hearing is an epiphenomenon of the cochlear amplifier. Ramamoorthy S; Nuttall AL PLoS One; 2012; 7(9):e45640. PubMed ID: 23049829 [TBL] [Abstract][Full Text] [Related]
17. The effect of tectorial membrane and basilar membrane longitudinal coupling in cochlear mechanics. Meaud J; Grosh K J Acoust Soc Am; 2010 Mar; 127(3):1411-21. PubMed ID: 20329841 [TBL] [Abstract][Full Text] [Related]
18. Impediment of basilar membrane motion reduces overload protection but not threshold sensitivity: evidence from clinical and experimental hydrops. Braun M Hear Res; 1996 Aug; 97(1-2):1-10. PubMed ID: 8844181 [TBL] [Abstract][Full Text] [Related]
19. Reticular lamina and basilar membrane vibrations in living mouse cochleae. Ren T; He W; Kemp D Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9910-5. PubMed ID: 27516544 [TBL] [Abstract][Full Text] [Related]
20. [The hearing organ: active sound amplifier and highly sensitive measuring system]. Kafka-Lützow A Radiologe; 1997 Dec; 37(12):933-44. PubMed ID: 9498243 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]