BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 8120588)

  • 1. Neurons in the rat spinal trigeminal complex driven by corneal nociceptors: receptive-field properties and effects of noxious stimulation of the cornea.
    Pozo MA; Cervero F
    J Neurophysiol; 1993 Dec; 70(6):2370-8. PubMed ID: 8120588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encoding of corneal input in two distinct regions of the spinal trigeminal nucleus in the rat: cutaneous receptive field properties, responses to thermal and chemical stimulation, modulation by diffuse noxious inhibitory controls, and projections to the parabrachial area.
    Meng ID; Hu JW; Benetti AP; Bereiter DA
    J Neurophysiol; 1997 Jan; 77(1):43-56. PubMed ID: 9120584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional organization of trigeminal subnucleus interpolaris: nociceptive and innocuous afferent inputs, projections to thalamus, cerebellum, and spinal cord, and descending modulation from periaqueductal gray.
    Hayashi H; Sumino R; Sessle BJ
    J Neurophysiol; 1984 May; 51(5):890-905. PubMed ID: 6726316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spinothalamic and spinohypothalamic tract neurons in the cervical enlargement of rats. II. Responses to innocuous and noxious mechanical and thermal stimuli.
    Dado RJ; Katter JT; Giesler GJ
    J Neurophysiol; 1994 Mar; 71(3):981-1002. PubMed ID: 8201437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trigeminohypothalamic and reticulohypothalamic tract neurons in the upper cervical spinal cord and caudal medulla of the rat.
    Malick A; Strassman RM; Burstein R
    J Neurophysiol; 2000 Oct; 84(4):2078-112. PubMed ID: 11024099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response properties of nociceptive and non-nociceptive neurons in the rat's trigeminal subnucleus caudalis (medullary dorsal horn) related to cutaneous and deep craniofacial afferent stimulation and modulation by diffuse noxious inhibitory controls.
    Hu JW
    Pain; 1990 Jun; 41(3):331-345. PubMed ID: 2388770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of rat medullary dorsal horn neurons following intranasal noxious chemical stimulation: effects of stimulus intensity, duration, and interstimulus interval.
    Peppel P; Anton F
    J Neurophysiol; 1993 Dec; 70(6):2260-75. PubMed ID: 8120581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of neurons in feline trigeminal subnucleus caudalis (medullary dorsal horn) to cutaneous, intraoral, and muscle afferent stimuli.
    Amano N; Hu JW; Sessle BJ
    J Neurophysiol; 1986 Feb; 55(2):227-43. PubMed ID: 3950689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal responses in rostral trigeminal brain-stem nuclei of macaque monkeys after chronic trigeminal tractotomy.
    Young RF; Perryman KM
    J Neurosurg; 1986 Oct; 65(4):508-16. PubMed ID: 3760961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of morphine on corneal-responsive neurons in rostral versus caudal regions of spinal trigeminal nucleus in the rat.
    Meng ID; Hu JW; Bereiter DA
    J Neurophysiol; 1998 May; 79(5):2593-602. PubMed ID: 9582231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential distribution of Fos-like immunoreactivity in the spinal trigeminal nucleus after noxious and innocuous thermal and chemical stimulation of rat cornea.
    Meng ID; Bereiter DA
    Neuroscience; 1996 May; 72(1):243-54. PubMed ID: 8730721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corneal dry-responsive neurons in the spinal trigeminal nucleus respond to innocuous cooling in the rat.
    Kurose M; Meng ID
    J Neurophysiol; 2013 May; 109(10):2517-22. PubMed ID: 23446686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parabrachial area and nucleus raphe magnus inhibition of corneal units in rostral and caudal portions of trigeminal subnucleus caudalis in the rat.
    Meng ID; Hu JW; Bereiter DA
    Pain; 2000 Sep; 87(3):241-251. PubMed ID: 10963904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The parabrachial area: electrophysiological evidence for an involvement in visceral nociceptive processes.
    Bernard JF; Huang GF; Besson JM
    J Neurophysiol; 1994 May; 71(5):1646-60. PubMed ID: 8064340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of temporomandibular joint stimulation on nociceptive and nonnociceptive neurons of the cat's trigeminal subnucleus caudalis (medullary dorsal horn).
    Broton JG; Hu JW; Sessle BJ
    J Neurophysiol; 1988 May; 59(5):1575-89. PubMed ID: 3385474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphine and somatostatin analogue reduce c-fos expression in trigeminal subnucleus caudalis produced by corneal stimulation in the rat.
    Bereiter DA
    Neuroscience; 1997 Apr; 77(3):863-74. PubMed ID: 9070758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responses of medullary dorsal horn neurons to corneal stimulation by CO(2) pulses in the rat.
    Hirata H; Hu JW; Bereiter DA
    J Neurophysiol; 1999 Nov; 82(5):2092-107. PubMed ID: 10561390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel class of neurons at the trigeminal subnucleus interpolaris/caudalis transition region monitors ocular surface fluid status and modulates tear production.
    Hirata H; Okamoto K; Tashiro A; Bereiter DA
    J Neurosci; 2004 Apr; 24(17):4224-32. PubMed ID: 15115818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response characteristics of lamb pontine neurons to stimulation of the oral cavity and epiglottis with different sensory modalities.
    Sweazey RD; Bradley RM
    J Neurophysiol; 1993 Sep; 70(3):1168-80. PubMed ID: 8229166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensory processing in a thermal afferent pathway.
    Davies SN; Goldsmith GE; Hellon RF; Mitchell D
    J Neurophysiol; 1985 Feb; 53(2):429-34. PubMed ID: 3872350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.