These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8120696)

  • 1. Point-spread function for light scattered in the human ocular fundus.
    Hodgkinson IJ; Greer PB; Molteno AC
    J Opt Soc Am A Opt Image Sci Vis; 1994 Feb; 11(2):479-86. PubMed ID: 8120696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wavelength dependence of the Stiles-Crawford effect explained by perception of backscattered light from the choroid.
    Berendschot TJ; van de Kraats J; van Norren D
    J Opt Soc Am A Opt Image Sci Vis; 2001 Jul; 18(7):1445-51. PubMed ID: 11444534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A new approach for studying the retinal and choroidal circulation].
    Yoneya S
    Nippon Ganka Gakkai Zasshi; 2004 Dec; 108(12):836-61; discussion 862. PubMed ID: 15656089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of blood on ocular fundus reflectance and determination of some optical properties of retinal blood vessels.
    Flower RW; McLeod DS; Pitts SM
    Invest Ophthalmol Vis Sci; 1978 Jun; 17(6):562-5. PubMed ID: 96040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical properties of ocular fundus tissues--an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation.
    Hammer M; Roggan A; Schweitzer D; Müller G
    Phys Med Biol; 1995 Jun; 40(6):963-78. PubMed ID: 7659735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response for light scattered in the ocular fundus from double-pass and Hartmann-Shack estimations.
    García-Guerra CE; Aldaba M; Arjona M; Díaz-Doutón F; Martínez-Roda JA; Pujol J
    J Opt Soc Am A Opt Image Sci Vis; 2016 Nov; 33(11):2150-2157. PubMed ID: 27857440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scattering contribution to the double-pass PSF using Monte Carlo simulations.
    Christaras D; Ginis H; Pennos A; Artal P
    Ophthalmic Physiol Opt; 2017 May; 37(3):342-346. PubMed ID: 28439979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local choroidal blood flow in the cat by laser Doppler flowmetry.
    Riva CE; Cranstoun SD; Mann RM; Barnes GE
    Invest Ophthalmol Vis Sci; 1994 Feb; 35(2):608-18. PubMed ID: 8113011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavelength dependence of the ocular straylight.
    Ginis HS; Perez GM; Bueno JM; Pennos A; Artal P
    Invest Ophthalmol Vis Sci; 2013 May; 54(5):3702-8. PubMed ID: 23599338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo modelling of the spectral reflectance of the human eye.
    Preece SJ; Claridge E
    Phys Med Biol; 2002 Aug; 47(16):2863-77. PubMed ID: 12222851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scattering properties of the retina and the choroids determined from OCT-A-scans.
    Hammer H; Schweitzer D; Thamm E; Kolb A; Strobel J
    Int Ophthalmol; 2001; 23(4-6):291-5. PubMed ID: 11944853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared imaging of sub-retinal structures in the human ocular fundus.
    Elsner AE; Burns SA; Weiter JJ; Delori FC
    Vision Res; 1996 Jan; 36(1):191-205. PubMed ID: 8746253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fundus reflectometry for photocoagulation dosimetry.
    Pflibsen KP; Delori FC; Pomerantzeff O; Pankratov MM
    Appl Opt; 1989 Mar; 28(6):1084-96. PubMed ID: 20548624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of reflecto-modulometry to study the optical quality of the inner retina.
    Gorrand JM; Bacin F
    Ophthalmic Physiol Opt; 1989 Apr; 9(2):198-204. PubMed ID: 2622656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro multispectral diffuse reflectance measurements of the porcine fundus.
    Salyer DA; Twietmeyer K; Beaudry N; Basavanthappa S; Park RI; Chipman R
    Invest Ophthalmol Vis Sci; 2005 Jun; 46(6):2120-4. PubMed ID: 15914632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood oxygenation measurements by multichannel reflectometry on the venous and arterial structures of the retina.
    Vucea V; Bernard PJ; Sauvageau P; Diaconu V
    Appl Opt; 2011 Sep; 50(26):5185-91. PubMed ID: 21947002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indocyanine green angiography for examining the normal ocular fundus in dogs.
    Wakaiki S; Maehara S; Abe R; Tsuzuki K; Igarashi O; Saito A; Itoh N; Yamashita K; Izumisawa Y
    J Vet Med Sci; 2007 May; 69(5):465-70. PubMed ID: 17551217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinal, choroidal, and papillary circulations under conditions of induced ocular hypertension.
    Archer DB; Ernest JT; Krill AE
    Am J Ophthalmol; 1972 Jun; 73(6):834-45. PubMed ID: 5032691
    [No Abstract]   [Full Text] [Related]  

  • 19. Monte Carlo model for studying the effects of melanin concentrations on retina light absorption.
    Guo Y; Yao G; Lei B; Tan J
    J Opt Soc Am A Opt Image Sci Vis; 2008 Feb; 25(2):304-11. PubMed ID: 18246163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescein angiography and ocular hemodynamics. Effect of ocular pigments on choroidal fluorescence during induced ocular hypertension.
    Ben-Sira I; Riva CE
    Invest Ophthalmol; 1973 Dec; 12(12):896-903. PubMed ID: 4588559
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.