BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 8120883)

  • 1. The domains of a type I DNA methyltransferase. Interactions and role in recognition of DNA methylation.
    Cooper LP; Dryden DT
    J Mol Biol; 1994 Mar; 236(4):1011-21. PubMed ID: 8120883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA recognition by the EcoK methyltransferase. The influence of DNA methylation and the cofactor S-adenosyl-L-methionine.
    Powell LM; Dryden DT; Willcock DF; Pain RH; Murray NE
    J Mol Biol; 1993 Nov; 234(1):60-71. PubMed ID: 8230207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence-specific DNA binding by EcoKI, a type IA DNA restriction enzyme.
    Powell LM; Dryden DT; Murray NE
    J Mol Biol; 1998 Nov; 283(5):963-76. PubMed ID: 9799636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. S-adenosyl methionine alters the DNA contacts of the EcoKI methyltransferase.
    Powell LM; Murray NE
    Nucleic Acids Res; 1995 Mar; 23(6):967-74. PubMed ID: 7731811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Target recognition by EcoKI: the recognition domain is robust and restriction-deficiency commonly results from the proteolytic control of enzyme activity.
    O'Neill M; Powell LM; Murray NE
    J Mol Biol; 2001 Mar; 307(3):951-63. PubMed ID: 11273713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the domain structure of the type IC DNA methyltransferase M.EcoR124I by limited proteolysis.
    Webb M; Taylor IA; Firman K; Kneale GG
    J Mol Biol; 1995 Jul; 250(2):181-90. PubMed ID: 7608969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The DNA binding characteristics of the trimeric EcoKI methyltransferase and its partially assembled dimeric form determined by fluorescence polarisation and DNA footprinting.
    Powell LM; Connolly BA; Dryden DT
    J Mol Biol; 1998 Nov; 283(5):947-61. PubMed ID: 9799635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assembly of EcoKI DNA methyltransferase requires the C-terminal region of the HsdM modification subunit.
    Powell LM; Lejeune E; Hussain FS; Cronshaw AD; Kelly SM; Price NC; Dryden DT
    Biophys Chem; 2003 Jan; 103(2):129-37. PubMed ID: 12568936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional analysis of conserved motifs in EcoP15I DNA methyltransferase.
    Ahmad I; Rao DN
    J Mol Biol; 1996 Jun; 259(2):229-40. PubMed ID: 8656425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mutational analysis of the two motifs common to adenine methyltransferases.
    Willcock DF; Dryden DT; Murray NE
    EMBO J; 1994 Aug; 13(16):3902-8. PubMed ID: 8070417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition from nonspecific to specific DNA interactions along the substrate-recognition pathway of dam methyltransferase.
    Horton JR; Liebert K; Hattman S; Jeltsch A; Cheng X
    Cell; 2005 May; 121(3):349-61. PubMed ID: 15882618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changing the target base specificity of the EcoRV DNA methyltransferase by rational de novo protein-design.
    Roth M; Jeltsch A
    Nucleic Acids Res; 2001 Aug; 29(15):3137-44. PubMed ID: 11470870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the C-terminal domain of the bacterial DNA-(adenine N6)-methyltransferase CcrM.
    Maier JA; Albu RF; Jurkowski TP; Jeltsch A
    Biochimie; 2015 Dec; 119():60-7. PubMed ID: 26475175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of EcoP15I DNA methyltransferase to DNA reveals a large structural distortion within the recognition sequence.
    Reddy YV; Rao DN
    J Mol Biol; 2000 May; 298(4):597-610. PubMed ID: 10788323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model for DNA binding and enzyme action derived from crystallographic studies of the TaqI N6-adenine-methyltransferase.
    Schluckebier G; Labahn J; Granzin J; Schildkraut I; Saenger W
    Gene; 1995 May; 157(1-2):131-4. PubMed ID: 7607476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stopped-flow and mutational analysis of base flipping by the Escherichia coli Dam DNA-(adenine-N6)-methyltransferase.
    Liebert K; Hermann A; Schlickenrieder M; Jeltsch A
    J Mol Biol; 2004 Aug; 341(2):443-54. PubMed ID: 15276835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specificity of DNA binding and methylation by the M.FokI DNA methyltransferase.
    Friedrich T; Fatemi M; Gowhar H; Leismann O; Jeltsch A
    Biochim Biophys Acta; 2000 Jul; 1480(1-2):145-59. PubMed ID: 11004560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Flavobacterium okeanokoites adenine-N6-specific DNA-methyltransferase M.FokI is a tandem enzyme of two independent domains with very different kinetic properties.
    Leismann O; Roth M; Friedrich T; Wende W; Jeltsch A
    Eur J Biochem; 1998 Feb; 251(3):899-906. PubMed ID: 9490066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate binding in vitro and kinetics of RsrI [N6-adenine] DNA methyltransferase.
    Szegedi SS; Reich NO; Gumport RI
    Nucleic Acids Res; 2000 Oct; 28(20):3962-71. PubMed ID: 11024176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular enzymology of the EcoRV DNA-(Adenine-N (6))-methyltransferase: kinetics of DNA binding and bending, kinetic mechanism and linear diffusion of the enzyme on DNA.
    Gowher H; Jeltsch A
    J Mol Biol; 2000 Oct; 303(1):93-110. PubMed ID: 11021972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.