These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 8121277)

  • 41. Hypercapnic normalization of BOLD fMRI: comparison across field strengths and pulse sequences.
    Cohen ER; Rostrup E; Sidaros K; Lund TE; Paulson OB; Ugurbil K; Kim SG
    Neuroimage; 2004 Oct; 23(2):613-24. PubMed ID: 15488411
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterizing contrast origins and noise contribution in spin-echo EPI BOLD at 3 T.
    Ragot DM; Chen JJ
    Magn Reson Imaging; 2019 Apr; 57():328-336. PubMed ID: 30439514
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mathematical optimization of contrast concentration for T1-weighted spoiled gradient echo imaging.
    Reeder SB; Smith MR; Hernando D
    Magn Reson Med; 2016 Apr; 75(4):1556-64. PubMed ID: 25981460
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Neuro MR: principles.
    Roberts TP; Mikulis D
    J Magn Reson Imaging; 2007 Oct; 26(4):823-37. PubMed ID: 17685415
    [TBL] [Abstract][Full Text] [Related]  

  • 45. New simulation approach using classical formalism to water nuclear magnetic relaxation dispersions in presence of superparamagnetic particles used as MRI contrast agents.
    Vuong QL; Gossuin Y; Gillis P; Delangre S
    J Chem Phys; 2012 Sep; 137(11):114505. PubMed ID: 22998269
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fast multiplanar spoiled gradient-recalled imaging of the liver: pulse sequence optimization and comparison with spin-echo MR imaging.
    Low RN; Francis IR; Herfkens RJ; Jeffrey RB; Glazer GM; Foo TK; Shimakawa A; Pelc NJ
    AJR Am J Roentgenol; 1993 Mar; 160(3):501-9. PubMed ID: 8381572
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Increasing specificity in functional magnetic resonance imaging by estimation of vessel size based on changes in blood oxygenation.
    Jochimsen TH; Möller HE
    Neuroimage; 2008 Mar; 40(1):228-36. PubMed ID: 18248738
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Shuffled magnetization-prepared multicontrast rapid gradient-echo imaging.
    Cao P; Zhu X; Tang S; Leynes A; Jakary A; Larson PEZ
    Magn Reson Med; 2018 Jan; 79(1):62-70. PubMed ID: 29080236
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Dynamic susceptibility contrast MRI with echo planar imaging using 1.0T system: comparison of different EPI sequences].
    Tsuchida C; Yamada H; Kumada H; Maeda M; Koshimoto Y; Kimura H; Kawamura Y; Okamoto J; Takizawa O; Ishii Y
    Nihon Igaku Hoshasen Gakkai Zasshi; 1997 Nov; 57(13):860-3. PubMed ID: 9423314
    [TBL] [Abstract][Full Text] [Related]  

  • 50. BOLD background gradient contributions in diffusion-weighted fMRI--comparison of spin-echo and twice-refocused spin-echo sequences.
    Pampel A; Jochimsen TH; Möller HE
    NMR Biomed; 2010 Jul; 23(6):610-8. PubMed ID: 20235336
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spin dephasing in a magnetic dipole field around large capillaries: Approximative and exact results.
    Kurz FT; Buschle LR; Kampf T; Zhang K; Schlemmer HP; Heiland S; Bendszus M; Ziener CH
    J Magn Reson; 2016 Dec; 273():83-97. PubMed ID: 27794269
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Temporal characteristics of NMR signals from spin 3/2 nuclei of incompletely disordered systems.
    Woessner DE; Bansal N
    J Magn Reson; 1998 Jul; 133(1):21-35. PubMed ID: 9654465
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Basic Pulse Sequences in Magnetic Resonance Imaging.
    Calle D; Navarro T
    Methods Mol Biol; 2018; 1718():21-37. PubMed ID: 29341000
    [TBL] [Abstract][Full Text] [Related]  

  • 54. MR imaging of the brain: comparison of gradient-echo and spin-echo pulse sequences.
    Pui MH; Fok EC
    AJR Am J Roentgenol; 1995 Oct; 165(4):959-62. PubMed ID: 7677001
    [TBL] [Abstract][Full Text] [Related]  

  • 55. MR imaging of the inner ear and cerebellopontine angle: comparison of three-dimensional and two-dimensional sequences.
    Czerny C; Rand T; Gstoettner W; Woelfl G; Imhof H; Trattnig S
    AJR Am J Roentgenol; 1998 Mar; 170(3):791-6. PubMed ID: 9490977
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simultaneous measurement of DeltaR2 and DeltaR2* in cat brain during hypoxia and hypercapnia.
    Prinster A; Pierpaoli C; Turner R; Jezzard P
    Neuroimage; 1997 Oct; 6(3):191-200. PubMed ID: 9344823
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Use of the intravascular contrast agent NC100150 injection in spin-echo and gradient-echo imaging of the heart.
    Taylor AM; Panting JR; Keegan J; Gatehouse PD; Jhooti P; Yang GZ; McGill S; Francis JM; Burman ED; Firmin DN; Pennell DJ
    J Cardiovasc Magn Reson; 1999; 1(1):23-32. PubMed ID: 11550338
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Obtaining blood oxygenation levels from MR signal behavior in the presence of single venous vessels.
    Sedlacik J; Rauscher A; Reichenbach JR
    Magn Reson Med; 2007 Nov; 58(5):1035-44. PubMed ID: 17969121
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Magnetic resonance relaxation induced by superparamagnetic particles used as contrast agents in magnetic resonance imaging: a theoretical review.
    Vuong QL; Gillis P; Roch A; Gossuin Y
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Nov; 9(6):. PubMed ID: 28398013
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In vivo quantification of contrast agent concentration using the induced magnetic field for time-resolved arterial input function measurement with MRI.
    de Rochefort L; Nguyen T; Brown R; Spincemaille P; Choi G; Weinsaft J; Prince MR; Wang Y
    Med Phys; 2008 Dec; 35(12):5328-39. PubMed ID: 19175092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.