These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 8121284)

  • 1. Gene duplications and evolution of the short wavelength-sensitive visual pigments in vertebrates.
    Yokoyama S
    Mol Biol Evol; 1994 Jan; 11(1):32-9. PubMed ID: 8121284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple origins of the green-sensitive opsin genes in fish.
    Register EA; Yokoyama R; Yokoyama S
    J Mol Evol; 1994 Sep; 39(3):268-73. PubMed ID: 7932788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid replacements and wavelength absorption of visual pigments in vertebrates.
    Yokoyama S
    Mol Biol Evol; 1995 Jan; 12(1):53-61. PubMed ID: 7877496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paralogous origin of the red- and green-sensitive visual pigment genes in vertebrates.
    Yokoyama S; Starmer WT; Yokoyama R
    Mol Biol Evol; 1993 May; 10(3):527-38. PubMed ID: 8336542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin and adaptation of green-sensitive (RH2) pigments in vertebrates.
    Yokoyama S; Jia H
    FEBS Open Bio; 2020 May; 10(5):873-882. PubMed ID: 32189477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution.
    Deeb SS; Wakefield MJ; Tada T; Marotte L; Yokoyama S; Marshall Graves JA
    Mol Biol Evol; 2003 Oct; 20(10):1642-9. PubMed ID: 12885969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular characterization of a blue visual pigment gene in the fish Astyanax fasciatus.
    Yokoyama R; Yokoyama S
    FEBS Lett; 1993 Nov; 334(1):27-31. PubMed ID: 8224220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cone visual pigments of aquatic mammals.
    Newman LA; Robinson PR
    Vis Neurosci; 2005; 22(6):873-9. PubMed ID: 16469194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation, DNA sequence and evolution of a color visual pigment gene of the blind cave fish Astyanax fasciatus.
    Yokoyama R; Yokoyama S
    Vision Res; 1990; 30(6):807-16. PubMed ID: 2385921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Into the blue: gene duplication and loss underlie color vision adaptations in a deep-sea chimaera, the elephant shark Callorhinchus milii.
    Davies WL; Carvalho LS; Tay BH; Brenner S; Hunt DM; Venkatesh B
    Genome Res; 2009 Mar; 19(3):415-26. PubMed ID: 19196633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Murine and bovine blue cone pigment genes: cloning and characterization of two new members of the S family of visual pigments.
    Chiu MI; Zack DJ; Wang Y; Nathans J
    Genomics; 1994 May; 21(2):440-3. PubMed ID: 8088841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral tuning in vertebrate short wavelength-sensitive 1 (SWS1) visual pigments: can wavelength sensitivity be inferred from sequence data?
    Hauser FE; van Hazel I; Chang BS
    J Exp Zool B Mol Dev Evol; 2014 Nov; 322(7):529-39. PubMed ID: 24890094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis for tetrachromatic color vision.
    Okano T; Fukada Y; Yoshizawa T
    Comp Biochem Physiol B Biochem Mol Biol; 1995 Nov; 112(3):405-14. PubMed ID: 8529019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tertiary structure and spectral tuning of UV and violet pigments in vertebrates.
    Yokoyama S; Starmer WT; Takahashi Y; Tada T
    Gene; 2006 Jan; 365():95-103. PubMed ID: 16343816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opsin phylogeny and evolution: a model for blue shifts in wavelength regulation.
    Chang BS; Crandall KA; Carulli JP; Hartl DL
    Mol Phylogenet Evol; 1995 Mar; 4(1):31-43. PubMed ID: 7620634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convergent evolution of the red- and green-like visual pigment genes in fish, Astyanax fasciatus, and human.
    Yokoyama R; Yokoyama S
    Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9315-8. PubMed ID: 2123554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regeneration of ultraviolet pigments of vertebrates.
    Yokoyama S; Radlwimmer FB; Kawamura S
    FEBS Lett; 1998 Feb; 423(2):155-8. PubMed ID: 9512349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The spectral tuning in the short wavelength-sensitive type 2 pigments.
    Yokoyama S; Tada T
    Gene; 2003 Mar; 306():91-8. PubMed ID: 12657470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenetic relationships among short wavelength-sensitive opsins of American chameleon (Anolis carolinensis) and other vertebrates.
    Kawamura S; Yokoyama S
    Vision Res; 1996 Sep; 36(18):2797-804. PubMed ID: 8917783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstitution of ancestral green visual pigments of zebrafish and molecular mechanism of their spectral differentiation.
    Chinen A; Matsumoto Y; Kawamura S
    Mol Biol Evol; 2005 Apr; 22(4):1001-10. PubMed ID: 15647516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.