These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Computer modeling of red blood cell rheology in the microcirculation: a brief overview. Cristini V; Kassab GS Ann Biomed Eng; 2005 Dec; 33(12):1724-7. PubMed ID: 16389520 [TBL] [Abstract][Full Text] [Related]
6. Use of Cell Transit Analyser pulse height to study the deformation of erythrocytes in microchannels. Drochon A Med Eng Phys; 2005 Mar; 27(2):157-65. PubMed ID: 15642511 [TBL] [Abstract][Full Text] [Related]
7. Shock formation and non-linear dispersion in a microvascular capillary network. Pop SR; Richardson G; Waters SL; Jensen OE Math Med Biol; 2007 Dec; 24(4):379-400. PubMed ID: 17947254 [TBL] [Abstract][Full Text] [Related]
8. Numerical study on flows of red blood cells with liposome-encapsulated hemoglobin at microvascular bifurcation. Hyakutake T; Tominaga S; Matsumoto T; Yanase S J Biomech Eng; 2008 Feb; 130(1):011014. PubMed ID: 18298190 [TBL] [Abstract][Full Text] [Related]
9. An inverse problem for the motion of blood in small vessels. Munteanu L; Donescu S; Chiroiu V Physiol Meas; 2006 Sep; 27(9):865-80. PubMed ID: 16868352 [TBL] [Abstract][Full Text] [Related]
10. Percolation phenomenon: the effect of capillary network rarefaction. Hudetz AG Microvasc Res; 1993 Jan; 45(1):1-10. PubMed ID: 8479338 [TBL] [Abstract][Full Text] [Related]
11. Impact of the FĂ„hraeus effect on NO and O2 biotransport: a computer model. Lamkin-Kennard KA; Jaron D; Buerk DG Microcirculation; 2004 Jun; 11(4):337-49. PubMed ID: 15280073 [TBL] [Abstract][Full Text] [Related]
12. A Mesoscale Computational Model for Microvascular Oxygen Transfer. Possenti L; Cicchetti A; Rosati R; Cerroni D; Costantino ML; Rancati T; Zunino P Ann Biomed Eng; 2021 Dec; 49(12):3356-3373. PubMed ID: 34184146 [TBL] [Abstract][Full Text] [Related]
13. [The role of mathematical models in microhemorheology (author's transl)]. Gross JF; Gersten K Arzneimittelforschung; 1981; 31(11a):1989-95. PubMed ID: 7199286 [TBL] [Abstract][Full Text] [Related]
14. In vitro hemorheological study on the hematocrit effect of human blood flow in a microtube. Ji HS; Lee SJ Clin Hemorheol Microcirc; 2008; 40(1):19-30. PubMed ID: 18791264 [TBL] [Abstract][Full Text] [Related]
15. Theoretical modeling in hemodynamics of microcirculation. Lee J; Smith NP Microcirculation; 2008 Nov; 15(8):699-714. PubMed ID: 18720227 [TBL] [Abstract][Full Text] [Related]
16. On the relative importance of rheology for image-based CFD models of the carotid bifurcation. Lee SW; Steinman DA J Biomech Eng; 2007 Apr; 129(2):273-8. PubMed ID: 17408332 [TBL] [Abstract][Full Text] [Related]
18. Hemodynamic characteristics, myocardial kinetics and microvascular rheology of FS-069, a second-generation echocardiographic contrast agent capable of producing myocardial opacification from a venous injection. Skyba DM; Camarano G; Goodman NC; Price RJ; Skalak TC; Kaul S J Am Coll Cardiol; 1996 Nov; 28(5):1292-300. PubMed ID: 8890829 [TBL] [Abstract][Full Text] [Related]
19. Simulation of neutrophil deformation and transport in capillaries using newtonian and viscoelastic drop models. Zhou C; Yue P; Feng JJ Ann Biomed Eng; 2007 May; 35(5):766-80. PubMed ID: 17380390 [TBL] [Abstract][Full Text] [Related]
20. Blood flow analysis in mesenteric microvascular network by image velocimetry and axial tomography. Manjunatha M; Singh SS; Singh M Microvasc Res; 2003 Jan; 65(1):49-55. PubMed ID: 12535872 [No Abstract] [Full Text] [Related] [Next] [New Search]