These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 8121329)
1. A peptide-model for the heparin-binding property of pseudorabies virus glycoprotein III. Sawitzky D; Voigt A; Habermehl KO Med Microbiol Immunol; 1993 Dec; 182(6):285-92. PubMed ID: 8121329 [TBL] [Abstract][Full Text] [Related]
3. Interaction of glycoprotein gIII with a cellular heparinlike substance mediates adsorption of pseudorabies virus. Mettenleiter TC; Zsak L; Zuckermann F; Sugg N; Kern H; Ben-Porat T J Virol; 1990 Jan; 64(1):278-86. PubMed ID: 2152816 [TBL] [Abstract][Full Text] [Related]
4. Cellular receptor structures for pseudorabies virus are blocked by antithrombin III. Voigt A; Sawitzky D; Zeichhardt H; Habermehl KO Med Microbiol Immunol; 1995 Aug; 184(2):97-103. PubMed ID: 7500917 [TBL] [Abstract][Full Text] [Related]
5. Interaction between pseudorabies virus and heparin/heparan sulfate. Pseudorabies virus mutants differ in their interaction with heparin/heparan sulfate when altered for specific glycoprotein C heparin-binding domain. Trybala E; Bergström T; Spillmann D; Svennerholm B; Flynn SJ; Ryan P J Biol Chem; 1998 Feb; 273(9):5047-52. PubMed ID: 9478954 [TBL] [Abstract][Full Text] [Related]
6. Glycoproteins gIII and gp50 play dominant roles in the biphasic attachment of pseudorabies virus. Karger A; Mettenleiter TC Virology; 1993 Jun; 194(2):654-64. PubMed ID: 8389078 [TBL] [Abstract][Full Text] [Related]
7. Glycoprotein B (gB) of pseudorabies virus interacts specifically with the glycosaminoglycan heparin. Sawitzky D; Voigt A; Zeichhardt H; Habermehl KO Virus Res; 1996 Mar; 41(1):101-8. PubMed ID: 8725106 [TBL] [Abstract][Full Text] [Related]
8. Comparison of heparin-sensitive attachment of pseudorabies virus (PRV) and herpes simplex virus type 1 and identification of heparin-binding PRV glycoproteins. Sawitzky D; Hampl H; Habermehl KO J Gen Virol; 1990 May; 71 ( Pt 5)():1221-5. PubMed ID: 2161054 [TBL] [Abstract][Full Text] [Related]
9. The receptor-binding domain of pseudorabies virus glycoprotein gC is composed of multiple discrete units that are functionally redundant. Flynn SJ; Ryan P J Virol; 1996 Mar; 70(3):1355-64. PubMed ID: 8627651 [TBL] [Abstract][Full Text] [Related]
10. Pseudorabies virus glycoprotein III derived from virions and infected cells binds to the third component of complement. Huemer HP; Larcher C; Coe NE Virus Res; 1992 May; 23(3):271-80. PubMed ID: 1320797 [TBL] [Abstract][Full Text] [Related]
11. The amino-terminal one-third of pseudorabies virus glycoprotein gIII contains a functional attachment domain, but this domain is not required for the efficient penetration of Vero cells. Flynn SJ; Burgett BL; Stein DS; Wilkinson KS; Ryan P J Virol; 1993 May; 67(5):2646-54. PubMed ID: 8386270 [TBL] [Abstract][Full Text] [Related]
12. Mode of interaction between pseudorabies virus and heparan sulfate/heparin. Trybala E; Bergström T; Spillmann D; Svennerholm B; Olofsson S; Flynn SJ; Ryan P Virology; 1996 Apr; 218(1):35-42. PubMed ID: 8615039 [TBL] [Abstract][Full Text] [Related]
13. Involvement of membrane-bound viral glycoproteins in adhesion of pseudorabies virus-infected cells. Hanssens FP; Nauwynck HJ; Pensaert MB J Virol; 1993 Aug; 67(8):4492-6. PubMed ID: 8392594 [TBL] [Abstract][Full Text] [Related]
14. An amino-terminal deletion mutation of pseudorabies virus glycoprotein gIII affects protein localization and RNA accumulation. Enquist LW; Keeler CL; Robbins AK; Ryan JP; Whealy ME J Virol; 1988 Oct; 62(10):3565-73. PubMed ID: 2843659 [TBL] [Abstract][Full Text] [Related]
15. Glycoprotein D homologs in herpes simplex virus type 1, pseudorabies virus, and bovine herpes virus type 1 bind directly to human HveC(nectin-1) with different affinities. Connolly SA; Whitbeck JJ; Rux AH; Krummenacher C; van Drunen Littel-van den Hurk S; Cohen GH; Eisenberg RJ Virology; 2001 Feb; 280(1):7-18. PubMed ID: 11162814 [TBL] [Abstract][Full Text] [Related]
16. The gIII glycoprotein of pseudorabies virus is involved in two distinct steps of virus attachment. Zsak L; Sugg N; Ben-Porat T; Robbins AK; Whealy ME; Enquist LW J Virol; 1991 Aug; 65(8):4317-24. PubMed ID: 1649332 [TBL] [Abstract][Full Text] [Related]
17. Amino acid substitutions in the V domain of nectin-1 (HveC) that impair entry activity for herpes simplex virus types 1 and 2 but not for Pseudorabies virus or bovine herpesvirus 1. Martinez WM; Spear PG J Virol; 2002 Jul; 76(14):7255-62. PubMed ID: 12072525 [TBL] [Abstract][Full Text] [Related]
18. Expression of porcine pseudorabies virus genes by a bovine herpesvirus-1 (infectious bovine rhinotracheitis virus) vector. Kit S; Otsuka H; Kit M Arch Virol; 1992; 124(1-2):1-20. PubMed ID: 1315133 [TBL] [Abstract][Full Text] [Related]
19. Comparative Mutagenesis of Pseudorabies Virus and Epstein-Barr Virus gH Identifies a Structural Determinant within Domain III of gH Required for Surface Expression and Entry Function. Möhl BS; Schröter C; Klupp BG; Fuchs W; Mettenleiter TC; Jardetzky TS; Longnecker R J Virol; 2015 Dec; 90(5):2285-93. PubMed ID: 26656711 [TBL] [Abstract][Full Text] [Related]
20. Effect of polylysine on the early stages of infection of wild type pseudorabies virus and of mutants defective in gIII. Zsak L; Mettenleiter TC; Sugg N; Ben-Porat T Virology; 1990 Nov; 179(1):330-8. PubMed ID: 2171208 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]