BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 8122033)

  • 1. Differential effects of fatty acyl coenzyme A derivatives on citrate synthase and glutamate dehydrogenase.
    Lai JC; Liang BB; Jarvi EJ; Cooper AJ; Lu DR
    Res Commun Chem Pathol Pharmacol; 1993 Dec; 82(3):331-8. PubMed ID: 8122033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain mitochondrial citrate synthase and glutamate dehydrogenase: differential inhibition by fatty acyl coenzyme A derivatives.
    Lai JC; Liang BB; Zhai S; Jarvi EJ; Lu DR
    Metab Brain Dis; 1994 Jun; 9(2):143-52. PubMed ID: 8072462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of long-chain acyl-coenzyme A's on the activity of the soluble form of nicotinamide adenine dinucleotide phosphate-specific isocitrate dehydrogenase from lactating bovine mammary gland.
    Farrell HM; Wickham ED; Reeves HC
    Arch Biochem Biophys; 1995 Aug; 321(1):199-208. PubMed ID: 7639521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of fatty-acyl-CoAs on the elongation of saturated fatty acid in porcine aorta microsomes.
    Murakami K; Yoshida S; Takeshita M
    Biochem Int; 1990; 21(2):297-304. PubMed ID: 2403369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complexes between mitochondrial enzymes and either citrate synthase or glutamate dehydrogenase.
    Fahien LA; Kmiotek E
    Arch Biochem Biophys; 1983 Feb; 220(2):386-97. PubMed ID: 6824331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the tricarboxylic acid cycle in sea urchin eggs and embryos.
    Mita M; Yasumasu I
    J Exp Zool; 1983 Oct; 228(1):71-7. PubMed ID: 6663254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurotoxicity of ammonia and fatty acids: differential inhibition of mitochondrial dehydrogenases by ammonia and fatty acyl coenzyme A derivatives.
    Lai JC; Cooper AJ
    Neurochem Res; 1991 Jul; 16(7):795-803. PubMed ID: 1944769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatty acyl-CoA as an endogenous activator of UDP-glucuronosyltransferases.
    Okamura K; Ishii Y; Ikushiro S; Mackenzie PI; Yamada H
    Biochem Biophys Res Commun; 2006 Jul; 345(4):1649-56. PubMed ID: 16737684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of short-chain acyl-coenzyme A dehydrogenase from pig liver by 2-pentynoyl-coenzyme A.
    Lundberg NN; Thorpe C
    Arch Biochem Biophys; 1993 Sep; 305(2):454-9. PubMed ID: 8373183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereoselective interaction of 2-halo-acyl-CoA derivatives with medium chain acyl-CoA dehydrogenase from pig kidney.
    Cummings JG; Thorpe C
    Arch Biochem Biophys; 1993 Apr; 302(1):85-91. PubMed ID: 8470910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of enzymes by fatty acyl coenzyme A. Interactions of short and long chain spin-labeled acyl-CoA with the acetyl-CoA site on pig heart citrate synthase.
    Hansel BC; Powell GL
    J Biol Chem; 1984 Feb; 259(3):1423-30. PubMed ID: 6693413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatty acids and anionic phospholipids alter the palmitoyl coenzyme A kinetics of hepatic monoacylglycerol acyltransferase in Triton X-100 mixed micelles.
    Coleman RA; Wang P; Bhat BG
    Biochemistry; 1996 Jul; 35(29):9576-83. PubMed ID: 8755739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of acetoacetyl-CoA synthetase from rat liver by fatty acyl-CoAs.
    Ito M; Fukui T; Saito T; Tomita K
    Biochim Biophys Acta; 1987 Dec; 922(3):287-93. PubMed ID: 3689812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new spectrophotometric assay for citrate synthase and its use to assess the inhibitory effects of palmitoyl thioesters.
    Else AJ; Barnes SJ; Danson MJ; Weitzman PD
    Biochem J; 1988 May; 251(3):803-7. PubMed ID: 3137924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of (Na++K+)-ATPase by long-chain fatty acids and fatty acyl coenzymes A.
    Huang WH; Kakar SS; Askari A
    Biochem Int; 1986 Apr; 12(4):521-8. PubMed ID: 3013198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of changes in three catalytic residues on the relative stabilities of some of the intermediates and transition states in the citrate synthase reaction.
    Kurz LC; Nakra T; Stein R; Plungkhen W; Riley M; Hsu F; Drysdale GR
    Biochemistry; 1998 Jul; 37(27):9724-37. PubMed ID: 9657685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of cis-4-decenoyl-CoA, 3-phenylpropionyl-CoA, and 2,6-dimethylheptanoyl-CoA.
    Sobhi HF; Minkler PE; Hoppel CL
    Anal Biochem; 2010 Jun; 401(1):114-24. PubMed ID: 20184857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional role of the active site glutamate-368 in rat short chain acyl-CoA dehydrogenase.
    Battaile KP; Mohsen AW; Vockley J
    Biochemistry; 1996 Dec; 35(48):15356-63. PubMed ID: 8952487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acyl-CoA-induced generation of reactive oxygen species in mitochondrial preparations is due to the presence of peroxisomes.
    Schönfeld P; Dymkowska D; Wojtczak L
    Free Radic Biol Med; 2009 Sep; 47(5):503-9. PubMed ID: 19442717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-chain acyl-CoA hydrolase in the brain.
    Yamada J
    Amino Acids; 2005 May; 28(3):273-8. PubMed ID: 15731883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.