These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Microstimulation in visual area MT: effects on direction discrimination performance. Salzman CD; Murasugi CM; Britten KH; Newsome WT J Neurosci; 1992 Jun; 12(6):2331-55. PubMed ID: 1607944 [TBL] [Abstract][Full Text] [Related]
3. Neuronal correlates of a perceptual decision. Newsome WT; Britten KH; Movshon JA Nature; 1989 Sep; 341(6237):52-4. PubMed ID: 2770878 [TBL] [Abstract][Full Text] [Related]
4. Greater plasticity in lower-level than higher-level visual motion processing in a passive perceptual learning task. Watanabe T; Náñez JE; Koyama S; Mukai I; Liederman J; Sasaki Y Nat Neurosci; 2002 Oct; 5(10):1003-9. PubMed ID: 12219093 [TBL] [Abstract][Full Text] [Related]
5. A psychophysical measurement and analysis of motion perception in normal and binocularly deprived monkeys. Fu LN; Boothe RG Invest Ophthalmol Vis Sci; 2001 Oct; 42(11):2547-53. PubMed ID: 11581196 [TBL] [Abstract][Full Text] [Related]
7. Neuroimaging Evidence for 2 Types of Plasticity in Association with Visual Perceptual Learning. Shibata K; Sasaki Y; Kawato M; Watanabe T Cereb Cortex; 2016 Sep; 26(9):3681-9. PubMed ID: 27298301 [TBL] [Abstract][Full Text] [Related]
9. The effect of perceptual learning on neuronal responses in monkey visual area V4. Yang T; Maunsell JH J Neurosci; 2004 Feb; 24(7):1617-26. PubMed ID: 14973244 [TBL] [Abstract][Full Text] [Related]
10. Low-level sensory plasticity during task-irrelevant perceptual learning: evidence from conventional and double training procedures. Pilly PK; Grossberg S; Seitz AR Vision Res; 2010 Feb; 50(4):424-32. PubMed ID: 19800358 [TBL] [Abstract][Full Text] [Related]
11. Learning to see: experience and attention in primary visual cortex. Crist RE; Li W; Gilbert CD Nat Neurosci; 2001 May; 4(5):519-25. PubMed ID: 11319561 [TBL] [Abstract][Full Text] [Related]
12. The analysis of visual motion: a comparison of neuronal and psychophysical performance. Britten KH; Shadlen MN; Newsome WT; Movshon JA J Neurosci; 1992 Dec; 12(12):4745-65. PubMed ID: 1464765 [TBL] [Abstract][Full Text] [Related]
13. An electrophysiological correlate of learning in motion perception. Fahle M; Skrandies W Ger J Ophthalmol; 1994 Nov; 3(6):427-32. PubMed ID: 7866264 [TBL] [Abstract][Full Text] [Related]
14. Microstimulation of visual cortex affects the speed of perceptual decisions. Ditterich J; Mazurek ME; Shadlen MN Nat Neurosci; 2003 Aug; 6(8):891-8. PubMed ID: 12858179 [TBL] [Abstract][Full Text] [Related]
15. A neural basis for the spatial suppression of visual motion perception. Liu LD; Haefner RM; Pack CC Elife; 2016 May; 5():. PubMed ID: 27228283 [TBL] [Abstract][Full Text] [Related]
16. Motion selectivity in macaque visual cortex. III. Psychophysics and physiology of apparent motion. Newsome WT; Mikami A; Wurtz RH J Neurophysiol; 1986 Jun; 55(6):1340-51. PubMed ID: 3734859 [TBL] [Abstract][Full Text] [Related]
17. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. Shadlen MN; Newsome WT J Neurophysiol; 2001 Oct; 86(4):1916-36. PubMed ID: 11600651 [TBL] [Abstract][Full Text] [Related]