These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 8124085)

  • 1. Presynaptic modulation of spinal reflexes.
    Rudomin P; Quevedo J; Eguibar JR
    Curr Opin Neurobiol; 1993 Dec; 3(6):997-1004. PubMed ID: 8124085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presynaptic selection of afferent inflow in the spinal cord.
    Rudomin P
    J Physiol Paris; 1999; 93(4):329-47. PubMed ID: 10574122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective cortical and segmental control of primary afferent depolarization of single muscle afferents in the cat spinal cord.
    Eguibar JR; Quevedo J; Rudomin P
    Exp Brain Res; 1997 Mar; 113(3):411-30. PubMed ID: 9108209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presynaptic inhibition in the vertebrate spinal cord revisited.
    Rudomin P; Schmidt RF
    Exp Brain Res; 1999 Nov; 129(1):1-37. PubMed ID: 10550500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is presynaptic inhibition distributed to corticospinal fibres in man?
    Nielsen J; Petersen N
    J Physiol; 1994 May; 477(Pt 1):47-58. PubMed ID: 8071888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selectivity of the central control of sensory information in the mammalian spinal cord.
    Rudomin P
    Adv Exp Med Biol; 2002; 508():157-70. PubMed ID: 12171106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential modulation of primary afferent depolarization of segmental and ascending intraspinal collaterals of single muscle afferents in the cat spinal cord.
    Rudomin P; Lomelí J; Quevedo J
    Exp Brain Res; 2004 Jun; 156(3):377-91. PubMed ID: 14985894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitability changes of somatic and viscero-somatic nociceptive reflexes in the decerebrate-spinal rabbit: role of NMDA receptors.
    Laird JM; de la Rubia PG; Cervero F
    J Physiol; 1995 Dec; 489 ( Pt 2)(Pt 2):545-55. PubMed ID: 8847646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective cortical control of information flow through different intraspinal collaterals of the same muscle afferent fiber.
    Eguibar JR; Quevedo J; Jiménez I; Rudomin P
    Brain Res; 1994 Apr; 643(1-2):328-33. PubMed ID: 8032927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for cutaneous and corticospinal modulation of presynaptic inhibition of Ia afferents from the human lower limb.
    Iles JF
    J Physiol; 1996 Feb; 491 ( Pt 1)(Pt 1):197-207. PubMed ID: 9011611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local control of information flow in segmental and ascending collaterals of single afferents.
    Lomelí J; Quevedo J; Linares P; Rudomin P
    Nature; 1998 Oct; 395(6702):600-4. PubMed ID: 9783585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Presynaptic inhibition of muscle spindle and tendon organ afferents in the mammalian spinal cord.
    Rudomin P
    Trends Neurosci; 1990 Dec; 13(12):499-505. PubMed ID: 1703681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization of the sacral parasympathetic reflex pathways to the urinary bladder and large intestine.
    de Groat WC; Nadelhaft I; Milne RJ; Booth AM; Morgan C; Thor K
    J Auton Nerv Syst; 1981 Apr; 3(2-4):135-60. PubMed ID: 6268684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinal reflexes, mechanisms and concepts: from Eccles to Lundberg and beyond.
    Hultborn H
    Prog Neurobiol; 2006; 78(3-5):215-32. PubMed ID: 16716488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tonic differential supraspinal modulation of PAD and PAH of segmental and ascending intraspinal collaterals of single group I muscle afferents in the cat spinal cord.
    Rudomin P; Lomelí J; Quevedo J
    Exp Brain Res; 2004 Nov; 159(2):239-50. PubMed ID: 15232667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reticulospinal actions on primary afferent depolarization of cutaneous and muscle afferents in the isolated frog neuraxis.
    González H; Jiménez I; Rudomin P
    Exp Brain Res; 1993; 95(2):261-70. PubMed ID: 8224051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional properties of spinal interneurons activated by muscular free nerve endings and their potential contributions to the clasp-knife reflex.
    Cleland CL; Rymer WZ
    J Neurophysiol; 1993 Apr; 69(4):1181-91. PubMed ID: 8492157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Afferent mechanisms for the reflex response to imposed ankle movement in chronic spinal cord injury.
    Schmit BD; Benz EN; Rymer WZ
    Exp Brain Res; 2002 Jul; 145(1):40-9. PubMed ID: 12070743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Central control of information transmission through the intraspinal arborizations of sensory fibers examined 100 years after Ramón y Cajal.
    Rudomin P
    Prog Brain Res; 2002; 136():409-21. PubMed ID: 12143398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle afferent excitability testing in spinal root-intact rats: dissociating peripheral afferent and efferent volleys generated by intraspinal microstimulation.
    Tomatsu S; Kim G; Confais J; Seki K
    J Neurophysiol; 2017 Feb; 117(2):796-807. PubMed ID: 27974451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.