BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 8124216)

  • 1. Biochemical characterization of a novel autocrine transferrin-like growth factor in acute myeloblastic leukemia.
    Grüber A; Pflüger KH; Schöneberger J; Wenzel E; Havemann K
    Leuk Lymphoma; 1993 Nov; 11(5-6):435-41. PubMed ID: 8124216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autocrine growth induced by transferrin-like substance in bladder carcinoma cells.
    Tanoguchi H; Tachibana M; Murai M
    Br J Cancer; 1997; 76(10):1262-70. PubMed ID: 9374369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transferrin derivatives with growth factor activities in acute myeloblastic leukemia: an autocrine/paracrine pathway.
    Pflüger KH; Grüber A; Welslau M; Köppler H; Havemann K
    Haematol Blood Transfus; 1990; 33():87-94. PubMed ID: 2323677
    [No Abstract]   [Full Text] [Related]  

  • 4. Transferrin synthesis by small cell lung cancer cells acts as an autocrine regulator of cellular proliferation.
    Vostrejs M; Moran PL; Seligman PA
    J Clin Invest; 1988 Jul; 82(1):331-9. PubMed ID: 2839550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of transferrin, Fe, and transferrin receptors in myeloid leukemia cell growth. Studies with an antitransferrin receptor monoclonal antibody.
    Taetle R; Rhyner K; Castagnola J; To D; Mendelsohn J
    J Clin Invest; 1985 Mar; 75(3):1061-7. PubMed ID: 2984253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transferrin-like autocrine growth factor, derived from T-lymphoma cells, that inhibits normal T-cell proliferation.
    Morrone G; Corbo L; Turco MC; Pizzano R; De Felice M; Bridges S; Venuta S
    Cancer Res; 1988 Jun; 48(12):3425-9. PubMed ID: 3259467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of casein kinase II in ML-1 human myeloblastic leukemia cells requires IGF-1 and transferrin.
    Wang LG; Liu XM; Wikiel H; Bloch A
    J Leukoc Biol; 1995 Feb; 57(2):332-4. PubMed ID: 7852847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of 5637-conditioned medium and recombinant cytokines on P-glycoprotein expression in a human GM-CSF-dependent leukemic myeloid cell line.
    Bailly JD; Pourquier P; Jaffrézou JP; Duchayne E; Cassar G; Bordier C; Laurent G
    Leukemia; 1995 Oct; 9(10):1718-25. PubMed ID: 7564516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishment and characterization of two novel cytokine-responsive acute myeloid and monocytic leukemia cell lines, MUTZ-2 and MUTZ-3.
    Hu ZB; Ma W; Zaborski M; MacLeod R; Quentmeier H; Drexler HG
    Leukemia; 1996 Jun; 10(6):1025-40. PubMed ID: 8667638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of transferrin as a progression factor for ML-1 human myeloblastic leukemia cell differentiation.
    Denstman S; Hromchak R; Guan XP; Bloch A
    J Biol Chem; 1991 Aug; 266(23):14873-6. PubMed ID: 1869525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Autocrine growth factor produced by a human promyelocytic leukemia cell line].
    Kasuga M; Yamanouchi T; Asano T; Tsushima T; Takaku F
    Gan To Kagaku Ryoho; 1986 Apr; 13(4 Pt 2):1410-5. PubMed ID: 3460526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel cell growth-promoting factor identified in a B cell leukemia cell line, BALL-1.
    Dao T; Holán V; Minowada J
    Neoplasma; 1993; 40(5):265-73. PubMed ID: 8272154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for internal autocrine regulation of growth in acute myeloblastic leukemia cells.
    Rogers SY; Bradbury D; Kozlowski R; Russell NH
    Exp Hematol; 1994 Jul; 22(7):593-8. PubMed ID: 7516889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the acidic receptosome in the uptake and retention of 67Ga by human leukemic HL60 cells.
    Chitambar CR; Zivkovic-Gilgenbach Z
    Cancer Res; 1990 Mar; 50(5):1484-7. PubMed ID: 2302713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization, molecular cloning and expression of megakaryocyte potentiating factor.
    Yamaguchi N; Yamamura Y; Konishi E; Ueda K; Kojima T; Hattori K; Oheda M; Imai N; Taniguchi Y; Tamura M; Ochi N
    Stem Cells; 1996; 14 Suppl 1():62-74. PubMed ID: 11012204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of carbohydrate moieties of human serum transferrin on the determination of its molecular mass by polyacrylamide gradient gel electrophoresis and staining with periodic acid-Schiff reagent.
    Riebe D; Thorn W
    Electrophoresis; 1991 Apr; 12(4):287-93. PubMed ID: 2070783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of spontaneous factor-independent cell lines derived from the human leukemic cell line TF-1: a dominant event.
    Gabert JA; Lopez M; Bangs CD; Martina N; Donlon TA; Mannoni P; Lee F
    Leukemia; 1994 Aug; 8(8):1359-68. PubMed ID: 8057674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coexpression of thrombopoietin and c-mpl genes in human acute myeloblastic leukemia cells.
    Matsumura I; Kanakura Y; Ikeda H; Ishikawa J; Yoshida H; Horikawa Y; Nishiura T; Tahara T; Kato T; Miyazaki H; Matsuzawa Y
    Leukemia; 1996 Jan; 10(1):91-4. PubMed ID: 8558944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of different transferrin forms on transferrin receptor expression, iron uptake, and cellular proliferation of human leukemic HL60 cells. Mechanisms responsible for the specific cytotoxicity of transferrin-gallium.
    Chitambar CR; Seligman PA
    J Clin Invest; 1986 Dec; 78(6):1538-46. PubMed ID: 3465751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Granulocyte-macrophage colony-stimulating factor enhances the cytotoxic effects of cytosine arabinoside in acute myeloblastic leukemia and in the myeloid blast crisis phase of chronic myeloid leukemia.
    Cannistra SA; Groshek P; Griffin JD
    Leukemia; 1989 May; 3(5):328-34. PubMed ID: 2654494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.