These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 8124332)

  • 1. Acoustic and mechanical properties of renal calculi: implications in shock wave lithotripsy.
    Chuong CJ; Zhong P; Preminger GM
    J Endourol; 1993 Dec; 7(6):437-44. PubMed ID: 8124332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic and mechanical properties of artificial stones in comparison to natural kidney stones.
    Heimbach D; Munver R; Zhong P; Jacobs J; Hesse A; Müller SC; Preminger GM
    J Urol; 2000 Aug; 164(2):537-44. PubMed ID: 10893640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of chemical treatments for improved comminution of artificial stones.
    Heimbach D; Kourambas J; Zhong P; Jacobs J; Hesse A; Mueller SC; Delvecchio FC; Cocks FH; Preminger GM
    J Urol; 2004 May; 171(5):1797-801. PubMed ID: 15076279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of differing stone fragility in extracorporeal shockwave lithotripsy.
    Zhong P; Preminger GM
    J Endourol; 1994 Aug; 8(4):263-8. PubMed ID: 7981735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microhardness measurements of renal calculi: regional differences and effects of microstructure.
    Zhong P; Chuong CJ; Goolsby RD; Preminger GM
    J Biomed Mater Res; 1992 Sep; 26(9):1117-30. PubMed ID: 1429761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of synchronous twin pulse technique for shock wave lithotripsy: determination of optimal parameters for in vitro stone fragmentation.
    Sheir KZ; Zabihi N; Lee D; Teichman JM; Rehman J; Sundaram CP; Heimbach D; Hesse A; Delvecchio F; Zhong P; Preminger GM; Clayman RV
    J Urol; 2003 Dec; 170(6 Pt 1):2190-4. PubMed ID: 14634376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of chemical and radiographic factors on the treatment of renal lithiasis using extracorporeal external shock-wave lithotripsy].
    Tobelem G; Economou C; Thomas J; Arvis G
    Ann Urol (Paris); 1987; 21(5):362-7. PubMed ID: 3426165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of stone composition on operative time during ureteroscopic holmium:yttrium-aluminum-garnet laser lithotripsy with active fragment retrieval.
    Wiener SV; Deters LA; Pais VM
    Urology; 2012 Oct; 80(4):790-4. PubMed ID: 22854140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced kidney stone fragmentation by short delay tandem conventional and modified lithotriptor shock waves: a numerical analysis.
    Tham LM; Lee HP; Lu C
    J Urol; 2007 Jul; 178(1):314-9. PubMed ID: 17499770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can Phyllanthus niruri affect the efficacy of extracorporeal shock wave lithotripsy for renal stones? A randomized, prospective, long-term study.
    Micali S; Sighinolfi MC; Celia A; De Stefani S; Grande M; Cicero AF; Bianchi G
    J Urol; 2006 Sep; 176(3):1020-2. PubMed ID: 16890682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy.
    Cleveland RO; Sapozhnikov OA
    J Acoust Soc Am; 2005 Oct; 118(4):2667-76. PubMed ID: 16266186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of renal stones in children: a comparison between percutaneous nephrolithotomy and shock wave lithotripsy.
    Shokeir AA; Sheir KZ; El-Nahas AR; El-Assmy AM; Eassa W; El-Kappany HA
    J Urol; 2006 Aug; 176(2):706-10. PubMed ID: 16813924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variability of renal stone fragility in shock wave lithotripsy.
    Williams JC; Saw KC; Paterson RF; Hatt EK; McAteer JA; Lingeman JE
    Urology; 2003 Jun; 61(6):1092-6; discussion 1097. PubMed ID: 12809867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of the chemical nature of urinary calculi on the results of extracorporeal shockwave lithotripsy].
    Doré B; Grange P; Aubert J
    Ann Urol (Paris); 1990; 24(1):21-6. PubMed ID: 2181923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracorporeal shock wave lithotripsy for radiolucent stones.
    Kumar S; Srinivasan V
    J Natl Med Assoc; 1992 Sep; 84(9):797-9. PubMed ID: 1404478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycosaminoglycan content of Ca-oxalate stone matrix. Effect of this factor on stone fragility.
    Sarica K; Türkölmez K; Küpeli B; Akpoyraz M; Durak I; Küpeli S; Koşar A
    Urol Int; 1997; 58(1):43-6. PubMed ID: 9058520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slow vs rapid delivery rate shock wave lithotripsy for pediatric renal urolithiasis: a prospective randomized study.
    Salem HK; Fathy H; Elfayoumy H; Aly H; Ghonium A; Mohsen MA; Hegazy Ael R
    J Urol; 2014 May; 191(5):1370-4. PubMed ID: 24262496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple method for fabricating artificial kidney stones of different physical properties.
    Esch E; Simmons WN; Sankin G; Cocks HF; Preminger GM; Zhong P
    Urol Res; 2010 Aug; 38(4):315-9. PubMed ID: 20652562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A strategy of cystine stone management.
    Koide T; Yoshioka T; Yamaguchi S; Utsunomiya M; Sonoda T
    J Urol; 1992 Jan; 147(1):112-4. PubMed ID: 1729496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of shock wave lithotripsy for renal calculi.
    Putman SS; Hamilton BD; Johnson DB
    Curr Opin Urol; 2004 Mar; 14(2):117-21. PubMed ID: 15075841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.