These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
414 related articles for article (PubMed ID: 8124809)
1. Endogenous adenosine does not activate ATP-sensitive potassium channels in the hypoxic guinea pig ventricle in vivo. Xu J; Wang L; Hurt CM; Pelleg A Circulation; 1994 Mar; 89(3):1209-16. PubMed ID: 8124809 [TBL] [Abstract][Full Text] [Related]
2. Effects of ATP-sensitive K+ channel blockers on the action potential shortening in hypoxic and ischaemic myocardium. Nakaya H; Takeda Y; Tohse N; Kanno M Br J Pharmacol; 1991 May; 103(1):1019-26. PubMed ID: 1908730 [TBL] [Abstract][Full Text] [Related]
3. Role for ATP-sensitive K+ channel in the development of A-V block during hypoxia. Sawanobori T; Adaniya H; Yukisada H; Hiraoka M J Mol Cell Cardiol; 1995 Jan; 27(1):647-57. PubMed ID: 7760383 [TBL] [Abstract][Full Text] [Related]
5. Direct preconditioning of cardiac ventricular myocytes via adenosine A1 receptor and KATP channel. Liang BT Am J Physiol; 1996 Nov; 271(5 Pt 2):H1769-77. PubMed ID: 8945890 [TBL] [Abstract][Full Text] [Related]
6. Smooth muscle relaxant activity of A1- and A2-selective adenosine receptor agonists in guinea pig trachea: involvement of potassium channels. Hadjkaddour K; Michel A; Laurent F; Boucard M Fundam Clin Pharmacol; 1996; 10(3):269-77. PubMed ID: 8836701 [TBL] [Abstract][Full Text] [Related]
7. Partial contribution of the ATP-sensitive K+ current to the effects of mild metabolic depression in rabbit myocardium. de Lorenzi F; Cai S; Schanne OF; Ruiz Petrich E Mol Cell Biochem; 1994 Mar; 132(2):133-43. PubMed ID: 7969096 [TBL] [Abstract][Full Text] [Related]
8. Actions of pinacidil at a reduced potassium concentration: a direct cardiac effect possibly involving the ATP-dependent potassium channel. Chi L; Black SC; Kuo PI; Fagbemi SO; Lucchesi BR J Cardiovasc Pharmacol; 1993 Feb; 21(2):179-90. PubMed ID: 7679150 [TBL] [Abstract][Full Text] [Related]
9. ATP-regulated K+ channels protect the myocardium against ischemia/reperfusion damage. Cole WC; McPherson CD; Sontag D Circ Res; 1991 Sep; 69(3):571-81. PubMed ID: 1908354 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of alpha(1)-adrenergic-mediated responses in rat ventricular myocytes by adenosine A(1) receptor activation: role of the K(ATP) channel. Hoque N; Cook MA; Karmazyn M J Pharmacol Exp Ther; 2000 Aug; 294(2):770-7. PubMed ID: 10900259 [TBL] [Abstract][Full Text] [Related]
11. ATP sensitive potassium channels are involved in adenosine A2 receptor mediated coronary vasodilatation in the dog. Akatsuka Y; Egashira K; Katsuda Y; Narishige T; Ueno H; Shimokawa H; Takeshita A Cardiovasc Res; 1994 Jun; 28(6):906-11. PubMed ID: 7923297 [TBL] [Abstract][Full Text] [Related]
12. Activation of ATP-sensitive potassium channels in hypoxic cardiac failure is not mediated by adenosine-1 receptors in the isolated rat heart. Reffelmann T; Skobel EC; Kammermeier H; Hanrath P; Schwarz ER J Cardiovasc Pharmacol Ther; 2001 Apr; 6(2):189-200. PubMed ID: 11509926 [TBL] [Abstract][Full Text] [Related]
13. Role of ATP-sensitive K+ channel on ECG ST segment elevation during a bout of myocardial ischemia. A study on epicardial mapping in dogs. Kubota I; Yamaki M; Shibata T; Ikeno E; Hosoya Y; Tomoike H Circulation; 1993 Oct; 88(4 Pt 1):1845-51. PubMed ID: 8403330 [TBL] [Abstract][Full Text] [Related]
14. Pinacidil-primed ATP-sensitive potassium channels mediate feedback control of mechanical power output in isolated myocardium of rats and guinea pigs. Schmid D; Staudacher DL; Plass CA; Loew HG; Fritz E; Steurer G; Chiba P; Moeslinger T Eur J Pharmacol; 2010 Feb; 628(1-3):116-27. PubMed ID: 19925786 [TBL] [Abstract][Full Text] [Related]
15. alpha 1-Adrenoceptor stimulation partially inhibits ATP-sensitive K+ current in guinea pig ventricular cells: attenuation of the action potential shortening induced by hypoxia and K+ channel openers. Takizawa T; Hara Y; Saito T; Masuda Y; Nakaya H J Cardiovasc Pharmacol; 1996 Dec; 28(6):799-808. PubMed ID: 8961078 [TBL] [Abstract][Full Text] [Related]
16. Pinacidil-induced electrical heterogeneity and extrasystolic activity in canine ventricular tissues. Does activation of ATP-regulated potassium current promote phase 2 reentry? Di Diego JM; Antzelevitch C Circulation; 1993 Sep; 88(3):1177-89. PubMed ID: 7689041 [TBL] [Abstract][Full Text] [Related]
17. Sulfonylureas, ATP-sensitive K+ channels, and cellular K+ loss during hypoxia, ischemia, and metabolic inhibition in mammalian ventricle. Venkatesh N; Lamp ST; Weiss JN Circ Res; 1991 Sep; 69(3):623-37. PubMed ID: 1908355 [TBL] [Abstract][Full Text] [Related]
18. Synergistic modulation of ATP-sensitive K+ currents by protein kinase C and adenosine. Implications for ischemic preconditioning. Liu Y; Gao WD; O'Rourke B; Marban E Circ Res; 1996 Mar; 78(3):443-54. PubMed ID: 8593703 [TBL] [Abstract][Full Text] [Related]
19. Pharmacological evidence for the persistent activation of ATP-sensitive K+ channels in early phase of reperfusion and its protective role against myocardial stunning. Shigematsu S; Sato T; Abe T; Saikawa T; Sakata T; Arita M Circulation; 1995 Oct; 92(8):2266-75. PubMed ID: 7554211 [TBL] [Abstract][Full Text] [Related]
20. BRL 34915 (cromakalim) activates ATP-sensitive K+ current in cardiac muscle. Sanguinetti MC; Scott AL; Zingaro GJ; Siegl PK Proc Natl Acad Sci U S A; 1988 Nov; 85(21):8360-4. PubMed ID: 2460868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]