BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 8125126)

  • 1. Identifying amino acid residues that influence plasma clearance of murine IgG1 fragments by site-directed mutagenesis.
    Kim JK; Tsen MF; Ghetie V; Ward ES
    Eur J Immunol; 1994 Mar; 24(3):542-8. PubMed ID: 8125126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of the site of the murine IgG1 molecule that is involved in binding to the murine intestinal Fc receptor.
    Kim JK; Tsen MF; Ghetie V; Ward ES
    Eur J Immunol; 1994 Oct; 24(10):2429-34. PubMed ID: 7925571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of the site of the IgG molecule that regulates maternofetal transmission in mice.
    Medesan C; Radu C; Kim JK; Ghetie V; Ward ES
    Eur J Immunol; 1996 Oct; 26(10):2533-6. PubMed ID: 8898970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delineation of the amino acid residues involved in transcytosis and catabolism of mouse IgG1.
    Medesan C; Matesoi D; Radu C; Ghetie V; Ward ES
    J Immunol; 1997 Mar; 158(5):2211-7. PubMed ID: 9036967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catabolism of the murine IgG1 molecule: evidence that both CH2-CH3 domain interfaces are required for persistence of IgG1 in the circulation of mice.
    Kim JK; Tsen MF; Ghetie V; Ward ES
    Scand J Immunol; 1994 Oct; 40(4):457-65. PubMed ID: 7939418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of binding staphylococcal protein A to immunoglobin G does not involve helix unwinding.
    Jendeberg L; Tashiro M; Tejero R; Lyons BA; Uhlén M; Montelione GT; Nilsson B
    Biochemistry; 1996 Jan; 35(1):22-31. PubMed ID: 8555177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IgG2 Fc structure and the dynamic features of the IgG CH2-CH3 interface.
    Teplyakov A; Zhao Y; Malia TJ; Obmolova G; Gilliland GL
    Mol Immunol; 2013 Nov; 56(1-2):131-9. PubMed ID: 23628091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A stable conformer of IgG, prepared by an acidic influence: study by calorimetry, binding of the C1q complement component, and monospecific anti-IgG].
    Kravchuk ZI; Vlasov AP; Liakhnovich GV; Martsev SP
    Biokhimiia; 1994 Oct; 59(10):1458-77. PubMed ID: 7819387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and stability changes of human IgG1 Fc as a consequence of methionine oxidation.
    Liu D; Ren D; Huang H; Dankberg J; Rosenfeld R; Cocco MJ; Li L; Brems DN; Remmele RL
    Biochemistry; 2008 May; 47(18):5088-100. PubMed ID: 18407665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Fab and Fc fragments of IgA1 exhibit a different arrangement from that in IgG: a study by X-ray and neutron solution scattering and homology modelling.
    Boehm MK; Woof JM; Kerr MA; Perkins SJ
    J Mol Biol; 1999 Mar; 286(5):1421-47. PubMed ID: 10064707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that the hinge region plays a role in maintaining serum levels of the murine IgG1 molecule.
    Kim JK; Tsen MF; Ghetie V; Ward ES
    Mol Immunol; 1995 May; 32(7):467-75. PubMed ID: 7783750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refined structure of an intact IgG2a monoclonal antibody.
    Harris LJ; Larson SB; Hasel KW; McPherson A
    Biochemistry; 1997 Feb; 36(7):1581-97. PubMed ID: 9048542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice.
    Ghetie V; Hubbard JG; Kim JK; Tsen MF; Lee Y; Ward ES
    Eur J Immunol; 1996 Mar; 26(3):690-6. PubMed ID: 8605939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types.
    Kanda Y; Yamada T; Mori K; Okazaki A; Inoue M; Kitajima-Miyama K; Kuni-Kamochi R; Nakano R; Yano K; Kakita S; Shitara K; Satoh M
    Glycobiology; 2007 Jan; 17(1):104-18. PubMed ID: 17012310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site of binding of IgG2b and IgG2a by mouse macrophage Fc receptors by using cyanogen bromide fragments.
    Diamond B; Boccumini L; Birshtein BK
    J Immunol; 1985 Feb; 134(2):1080-3. PubMed ID: 3155534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of protein A and its fragment B on the catabolic and Fc receptor sites of IgG.
    Dima S; Medeşan C; Moţa G; Moraru I; Sjöquist J; Gheţie V
    Eur J Immunol; 1983 Aug; 13(8):605-14. PubMed ID: 6884420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure analysis of streptococcal protein G Fc binding domain.
    Cai SY; Wang YY; Yao ZJ
    Sci China B; 1993 Jan; 36(1):75-80. PubMed ID: 8503988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular modeling and experimental approaches toward designing a minimalist protein having Fc-binding activity of Staphylococcal protein A.
    Sengupta J; Sinha P; Mukhopadhyay C; Ray PK
    Biochem Biophys Res Commun; 1999 Mar; 256(1):6-12. PubMed ID: 10066414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-based stability engineering of the mouse IgG1 Fab fragment by modifying constant domains.
    Teerinen T; Valjakka J; Rouvinen J; Takkinen K
    J Mol Biol; 2006 Aug; 361(4):687-97. PubMed ID: 16876195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of domain interface residues to the stability of antibody CH3 domain homodimers.
    Dall'Acqua W; Simon AL; Mulkerrin MG; Carter P
    Biochemistry; 1998 Jun; 37(26):9266-73. PubMed ID: 9649307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.