These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 8125209)
1. The impact of exercise and intersubject variability on dose estimates for dichloromethane derived from a physiologically based pharmacokinetic model. Dankovic DA; Bailer AJ Fundam Appl Toxicol; 1994 Jan; 22(1):20-5. PubMed ID: 8125209 [TBL] [Abstract][Full Text] [Related]
2. DNA-protein cross-links (DPX) and cell proliferation in B6C3F1 mice but not Syrian golden hamsters exposed to dichloromethane: pharmacokinetics and risk assessment with DPX as dosimeter. Casanova M; Conolly RB; Heck H d'A Fundam Appl Toxicol; 1996 May; 31(1):103-16. PubMed ID: 8998946 [TBL] [Abstract][Full Text] [Related]
3. Physiologically based pharmacokinetic modeling of inhalation exposure of humans to dichloromethane during moderate to heavy exercise. Jonsson F; Bois F; Johanson G Toxicol Sci; 2001 Feb; 59(2):209-18. PubMed ID: 11158713 [TBL] [Abstract][Full Text] [Related]
4. In vitro metabolism of methylene chloride in human and animal tissues: use in physiologically based pharmacokinetic models. Reitz RH; Mendrala AL; Guengerich FP Toxicol Appl Pharmacol; 1989 Feb; 97(2):230-46. PubMed ID: 2922756 [TBL] [Abstract][Full Text] [Related]
5. Physiologically based pharmacokinetic modeling with dichloromethane, its metabolite, carbon monoxide, and blood carboxyhemoglobin in rats and humans. Andersen ME; Clewell HJ; Gargas ML; MacNaughton MG; Reitz RH; Nolan RJ; McKenna MJ Toxicol Appl Pharmacol; 1991 Mar; 108(1):14-27. PubMed ID: 1900959 [TBL] [Abstract][Full Text] [Related]
6. Physiologically based pharmacokinetics and the risk assessment process for methylene chloride. Andersen ME; Clewell HJ; Gargas ML; Smith FA; Reitz RH Toxicol Appl Pharmacol; 1987 Feb; 87(2):185-205. PubMed ID: 3824380 [TBL] [Abstract][Full Text] [Related]
7. Revised assessment of cancer risk to dichloromethane: part I Bayesian PBPK and dose-response modeling in mice. Marino DJ; Clewell HJ; Gentry PR; Covington TR; Hack CE; David RM; Morgott DA Regul Toxicol Pharmacol; 2006 Jun; 45(1):44-54. PubMed ID: 16442684 [TBL] [Abstract][Full Text] [Related]
8. Effects of glutathione transferase theta polymorphism on the risk estimates of dichloromethane to humans. El-Masri HA; Bell DA; Portier CJ Toxicol Appl Pharmacol; 1999 Aug; 158(3):221-30. PubMed ID: 10438655 [TBL] [Abstract][Full Text] [Related]
9. Estimating the risk of human cancer associated with exposure to methylene chloride. Reitz RH Ann Ist Super Sanita; 1991; 27(4):609-14. PubMed ID: 1820733 [TBL] [Abstract][Full Text] [Related]
10. Estimation of interindividual variation in oxidative metabolism of dichloromethane in human volunteers. Sweeney LM; Kirman CR; Morgott DA; Gargas ML Toxicol Lett; 2004 Dec; 154(3):201-16. PubMed ID: 15501612 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of two different metabolic hypotheses for dichloromethane toxicity using physiologically based pharmacokinetic modeling for in vivo inhalation gas uptake data exposure in female B6C3F1 mice. Evans MV; Caldwell JC Toxicol Appl Pharmacol; 2010 May; 244(3):280-90. PubMed ID: 20153349 [TBL] [Abstract][Full Text] [Related]
12. Revised assessment of cancer risk to dichloromethane II. Application of probabilistic methods to cancer risk determinations. David RM; Clewell HJ; Gentry PR; Covington TR; Morgott DA; Marino DJ Regul Toxicol Pharmacol; 2006 Jun; 45(1):55-65. PubMed ID: 16439044 [TBL] [Abstract][Full Text] [Related]
13. Dichloromethane (methylene chloride): metabolism to formaldehyde and formation of DNA-protein cross-links in B6C3F1 mice and Syrian golden hamsters. Casanova M; Deyo DF; Heck H Toxicol Appl Pharmacol; 1992 May; 114(1):162-5. PubMed ID: 1585369 [TBL] [Abstract][Full Text] [Related]
14. Probabilistic dose-response modeling: case study using dichloromethane PBPK model results. Marino DJ; Starr TB Regul Toxicol Pharmacol; 2007 Dec; 49(3):285-300. PubMed ID: 17949874 [TBL] [Abstract][Full Text] [Related]
15. Use of the vial equilibration technique for determination of metabolic rate constants for dichloromethane. Kim C; Manning RO; Brown RP; Bruckner JV Toxicol Appl Pharmacol; 1996 Aug; 139(2):243-51. PubMed ID: 8806840 [TBL] [Abstract][Full Text] [Related]
16. Direct comparison of the nature of mouse and human GST T1-1 and the implications on dichloromethane carcinogenicity. Sherratt PJ; Williams S; Foster J; Kernohan N; Green T; Hayes JD Toxicol Appl Pharmacol; 2002 Mar; 179(2):89-97. PubMed ID: 11884241 [TBL] [Abstract][Full Text] [Related]
17. Sensitivity of physiologically based pharmacokinetic models to variation in model parameters: methylene chloride. Clewell HJ; Lee TS; Carpenter RL Risk Anal; 1994 Aug; 14(4):521-31. PubMed ID: 7972956 [TBL] [Abstract][Full Text] [Related]
18. An approach for incorporating tissue composition data into physiologically based pharmacokinetic models. Pelekis M; Poulin P; Krishnan K Toxicol Ind Health; 1995; 11(5):511-22. PubMed ID: 8677516 [TBL] [Abstract][Full Text] [Related]
19. Assessing the relevance of rodent data on chemical interactions for health risk assessment purposes: a case study with dichloromethane-toluene mixture. Pelekis M; Krishnan K Regul Toxicol Pharmacol; 1997 Feb; 25(1):79-86. PubMed ID: 9056503 [TBL] [Abstract][Full Text] [Related]
20. A Bayesian analysis of the influence of GSTT1 polymorphism on the cancer risk estimate for dichloromethane. Jonsson F; Johanson G Toxicol Appl Pharmacol; 2001 Jul; 174(2):99-112. PubMed ID: 11446825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]