These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 8125560)

  • 21. Effects of captopril on the renin angiotensin system, oxidative stress, and endothelin in normal and hypertensive rats.
    Bolterman RJ; Manriquez MC; Ortiz Ruiz MC; Juncos LA; Romero JC
    Hypertension; 2005 Oct; 46(4):943-7. PubMed ID: 16087785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of captopril and hydralazine on arterial pressure-urinary output relationships in spontaneously hypertensive rats.
    Kline RL; Mercer PF
    Hypertension; 1987 Dec; 10(6):590-4. PubMed ID: 3319899
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selective effect of tempol on renal medullary hemodynamics in spontaneously hypertensive rats.
    Feng MG; Dukacz SA; Kline RL
    Am J Physiol Regul Integr Comp Physiol; 2001 Nov; 281(5):R1420-5. PubMed ID: 11641111
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lifetime treatment with captopril improves renal function in spontaneously hypertensive rats.
    Roysommuti S; Mozaffari MS; Berecek KH; Wyss JM
    Clin Exp Hypertens; 1999 Nov; 21(8):1315-25. PubMed ID: 10574415
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of renal medullary adenosine in the control of blood flow and sodium excretion.
    Zou AP; Nithipatikom K; Li PL; Cowley AW
    Am J Physiol; 1999 Mar; 276(3):R790-8. PubMed ID: 10070140
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The hypotensive effect of captopril is not mediated by renal medullary lipids.
    Saeki S; Ogihara T; Masugi F; Kumahara Y
    Clin Exp Hypertens A; 1987; 9(2-3):395-9. PubMed ID: 3301080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of kinins and angiotensin II in the renal hemodynamic response to captopril.
    Mattson DL; Roman RJ
    Am J Physiol; 1991 May; 260(5 Pt 2):F670-9. PubMed ID: 2035654
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Renal cortical and papillary blood flow in spontaneously hypertensive rats.
    Roman RJ; Kaldunski ML
    Hypertension; 1988 Jun; 11(6 Pt 2):657-63. PubMed ID: 3391676
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of renal medullary circulation by the renin-angiotensin system in genetically hypertensive rats.
    Liu KL
    Clin Exp Pharmacol Physiol; 2009 May; 36(5-6):455-61. PubMed ID: 19215237
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced renal angiotensin II subtype 1 receptor responses in the spontaneously hypertensive rat.
    Kost CK; Jackson EK
    Hypertension; 1993 Apr; 21(4):420-31. PubMed ID: 8458644
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of aldosterone in renal vascular injury in stroke-prone hypertensive rats.
    Rocha R; Chander PN; Zuckerman A; Stier CT
    Hypertension; 1999 Jan; 33(1 Pt 2):232-7. PubMed ID: 9931110
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of chronic renal medullary nitric oxide inhibition on blood pressure.
    Mattson DL; Lu S; Nakanishi K; Papanek PE; Cowley AW
    Am J Physiol; 1994 May; 266(5 Pt 2):H1918-26. PubMed ID: 8203591
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protective effect of angiotensin II-induced increase in nitric oxide in the renal medullary circulation.
    Zou AP; Wu F; Cowley AW
    Hypertension; 1998 Jan; 31(1 Pt 2):271-6. PubMed ID: 9453315
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Beneficial cardiac effects of the renin inhibitor aliskiren in spontaneously hypertensive rats.
    van Esch JH; Moltzer E; van Veghel R; Garrelds IM; Leijten F; Bouhuizen AM; Danser AH
    J Hypertens; 2010 Oct; 28(10):2145-55. PubMed ID: 20625318
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Failure of captopril to lower blood pressure in spontaneously hypertensive rats offered water and saline to drink.
    DiNicolantonio R
    Clin Exp Pharmacol Physiol; 1983; 10(3):269-72. PubMed ID: 6354531
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of long-term vasopressin receptor stimulation on medullary blood flow and arterial pressure.
    Cowley AW; Skelton MM; Kurth TM
    Am J Physiol; 1998 Nov; 275(5):R1420-4. PubMed ID: 9791056
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Angiotensin II/prostaglandin I2 interactions in spontaneously hypertensive rats.
    Jackson EK; Herzer WA
    Hypertension; 1993 Nov; 22(5):688-98. PubMed ID: 8225529
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Different reactivity to angiotensin II of peripheral and renal arteries in spontaneously hypertensive rats: effect of acute and chronic angiotensin converting enzyme inhibition.
    Guidi E; Hollenberg NK
    J Hypertens Suppl; 1986 Dec; 4(6):S480-2. PubMed ID: 11538668
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preservation of renal function by angiotensin during chronic adrenergic stimulation.
    Lohmeier TE; Yang HM
    Hypertension; 1991 Mar; 17(3):278-87. PubMed ID: 1999358
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of renal medullary blood flow in the development of L-NAME hypertension in rats.
    Nakanishi K; Mattson DL; Cowley AW
    Am J Physiol; 1995 Feb; 268(2 Pt 2):R317-23. PubMed ID: 7864223
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.