BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 8125729)

  • 21. Gi2 and Gi3 couple met-enkephalin to inhibition of lacrimal secretion.
    Meneray MA; Fields TY; Bennett DJ
    Invest Ophthalmol Vis Sci; 1998 Jul; 39(8):1339-45. PubMed ID: 9660481
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rab27b regulates exocytosis of secretory vesicles in acinar epithelial cells from the lacrimal gland.
    Chiang L; Ngo J; Schechter JE; Karvar S; Tolmachova T; Seabra MC; Hume AN; Hamm-Alvarez SF
    Am J Physiol Cell Physiol; 2011 Aug; 301(2):C507-21. PubMed ID: 21525430
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterotrimeric GTP-binding proteins in the lacrimal acinar cell endomembrane system.
    Qian L; Yang T; Chen H; Xie J; Zeng H; Warren DW; MacVeigh M; Meneray MA; Hamm-Alvarez SF; Mircheff AK
    Exp Eye Res; 2002 Jan; 74(1):7-22. PubMed ID: 11878814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. X-ray microanalysis of rat exorbital lacrimal gland.
    Roomans GM
    Scan Electron Microsc; 1984; (Pt 2):889-95. PubMed ID: 6484504
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of the microtubule cytoskeleton in traffic of EGF through the lacrimal acinar cell endomembrane network.
    Xie J; Qian L; Wang Y; Hamm-Alvarez SF; Mircheff AK
    Exp Eye Res; 2004 Jun; 78(6):1093-106. PubMed ID: 15109916
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Clathrin and caveolin-1 expression in primary pigmented rabbit conjunctival epithelial cells: role in PLGA nanoparticle endocytosis.
    Qaddoumi MG; Gukasyan HJ; Davda J; Labhasetwar V; Kim KJ; Lee VH
    Mol Vis; 2003 Oct; 9():559-68. PubMed ID: 14566223
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional expression of the adenosine A1 receptor in rabbit lacrimal gland.
    Edman MC; Andersson SV; Delbro D; Gierow JP
    Exp Eye Res; 2008 Jan; 86(1):110-7. PubMed ID: 17998138
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amniotic membrane as a carrier for lacrimal gland acinar cells.
    Schrader S; Wedel T; Kremling C; Laqua H; Geerling G
    Graefes Arch Clin Exp Ophthalmol; 2007 Nov; 245(11):1699-704. PubMed ID: 17562065
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cytopathology and exocrine dysfunction induced in ex vivo rabbit lacrimal gland acinar cell models by chronic exposure to histamine or serotonin.
    McDonald ML; Wang Y; Selvam S; Nakamura T; Chow RH; Schechter JE; Yiu SC; Mircheff AK
    Invest Ophthalmol Vis Sci; 2009 Jul; 50(7):3164-75. PubMed ID: 19324838
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stimulation with carbachol alters endomembrane distribution and plasma membrane expression of intracellular proteins in lacrimal acinar cells.
    Yang T; Zeng H; Zhang J; Okamoto CT; Warren DW; Wood RL; Bachmann M; Mircheff AK
    Exp Eye Res; 1999 Dec; 69(6):651-61. PubMed ID: 10620394
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbachol-induced increase of Na+/H+ antiport and recruitment of Na+,K(+)-ATPase in rabbit lacrimal acini.
    Lambert RW; Maves CA; Mircheff AK
    Curr Eye Res; 1993 Jun; 12(6):539-51. PubMed ID: 8395379
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of the role of prolactin in the development and function of the lacrimal and harderian glands using genetically modified mice.
    McClellan KA; Robertson FG; Kindblom J; Wennbo H; Törnell J; Bouchard B; Kelly PA; Ormandy CJ
    Invest Ophthalmol Vis Sci; 2001 Jan; 42(1):23-30. PubMed ID: 11133844
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adenosine A2 receptor presence and synergy with cholinergic stimulation in rabbit lacrimal gland.
    Carlsson SK; Edman MC; Delbro D; Gierow JP
    Curr Eye Res; 2010 Jun; 35(6):466-74. PubMed ID: 20465439
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biochemical changes contributing to functional quiescence in lacrimal gland acinar cells after chronic ex vivo exposure to a muscarinic agonist.
    Qian L; Wang Y; Xie J; Rose CM; Yang T; Nakamura T; Sandberg M; Zeng H; Schechter JE; Chow RH; Hamm-Alvarez SF; Mircheff AK
    Scand J Immunol; 2003 Nov; 58(5):550-65. PubMed ID: 14629627
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of diabetes mellitus on acinar morphology, peroxidase concentration, and release in isolated rat lacrimal glands.
    Shetty R; Saeed T; Rashed H; Adeghate E; Singh J
    Curr Eye Res; 2009 Oct; 34(10):905-11. PubMed ID: 19895318
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Autonomic control of lacrimal protein secretion.
    Bromberg BB
    Invest Ophthalmol Vis Sci; 1981 Jan; 20(1):110-6. PubMed ID: 7451072
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The secretory response in dissociated acini from the rat submandibular gland.
    Fleming N; Teitelman M; Sturgess JM
    J Morphol; 1980 Mar; 163(3):219-30. PubMed ID: 7373655
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sex hormone regulation of tear lipocalin in the rabbit lacrimal gland.
    Seamon V; Vellala K; Zylberberg C; Ponamareva O; Azzarolo AM
    Exp Eye Res; 2008 Sep; 87(3):184-90. PubMed ID: 18653183
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proliferation of lacrimal gland acinar cells in primary culture. Stimulation by extracellular matrix, EGF, and DHT.
    Schönthal AH; Warren DW; Stevenson D; Schecter JE; Azzarolo AM; Mircheff AK; Trousdale MD
    Exp Eye Res; 2000 May; 70(5):639-49. PubMed ID: 10870522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein phosphatase inhibitors alter cellular microtubules and reduce carbachol-dependent protein secretion in lacrimal acini.
    Zhang L; da Costa SR; Yarber FA; Runnegar M; Hamm-Alvarez SF
    Curr Eye Res; 2000 May; 20(5):373-83. PubMed ID: 10855032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.