These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 8125940)

  • 1. Regulation of cellular Ca2+ by yeast vacuoles.
    Dunn T; Gable K; Beeler T
    J Biol Chem; 1994 Mar; 269(10):7273-8. PubMed ID: 8125940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The product of HUM1, a novel yeast gene, is required for vacuolar Ca2+/H+ exchange and is related to mammalian Na+/Ca2+ exchangers.
    Pozos TC; Sekler I; Cyert MS
    Mol Cell Biol; 1996 Jul; 16(7):3730-41. PubMed ID: 8668190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inositol 1,4,5-trisphosphate releases Ca2+ from vacuolar membrane vesicles of Saccharomyces cerevisiae.
    Belde PJ; Vossen JH; Borst-Pauwels GW; Theuvenet AP
    FEBS Lett; 1993 May; 323(1-2):113-8. PubMed ID: 8495722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium transport driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae.
    Ohsumi Y; Anraku Y
    J Biol Chem; 1983 May; 258(9):5614-7. PubMed ID: 6343390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saccharomyces cerevisiae lacking Btn1p modulate vacuolar ATPase activity to regulate pH imbalance in the vacuole.
    Padilla-López S; Pearce DA
    J Biol Chem; 2006 Apr; 281(15):10273-80. PubMed ID: 16423829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Golgi apparatus plays a significant role in the maintenance of Ca2+ homeostasis in the vps33Delta vacuolar biogenesis mutant of Saccharomyces cerevisiae.
    Miseta A; Fu L; Kellermayer R; Buckley J; Bedwell DM
    J Biol Chem; 1999 Feb; 274(9):5939-47. PubMed ID: 10026219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of cellular Mg2+ by Saccharomyces cerevisiae.
    Beeler T; Bruce K; Dunn T
    Biochim Biophys Acta; 1997 Jan; 1323(2):310-8. PubMed ID: 9042353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphate transport in yeast vacuoles.
    Booth JW; Guidotti G
    J Biol Chem; 1997 Aug; 272(33):20408-13. PubMed ID: 9252348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of stimulation of Ca2+ uptake by miconazole and ethidium bromide in yeasts: role of vacuoles in Ca2+ detoxification.
    Eilam Y; Lavi H; Grossowicz N
    Microbios; 1985; 44(177):51-66. PubMed ID: 2870412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vacuolar H+/Ca2+ transport: who's directing the traffic?
    Hirschi K
    Trends Plant Sci; 2001 Mar; 6(3):100-4. PubMed ID: 11239607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The vacuolar Ca2+/H+ exchanger Vcx1p/Hum1p tightly controls cytosolic Ca2+ levels in S. cerevisiae.
    Miseta A; Kellermayer R; Aiello DP; Fu L; Bedwell DM
    FEBS Lett; 1999 May; 451(2):132-6. PubMed ID: 10371152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The yeast mutant vps5Delta affected in the recycling of Golgi membrane proteins displays an enhanced vacuolar Mg2+/H+ exchange activity.
    Borrelly G; Boyer JC; Touraine B; Szponarski W; Rambier M; Gibrat R
    Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9660-5. PubMed ID: 11493679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A family of yeast proteins mediating bidirectional vacuolar amino acid transport.
    Russnak R; Konczal D; McIntire SL
    J Biol Chem; 2001 Jun; 276(26):23849-57. PubMed ID: 11274162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of ionic currents in guard cell vacuoles by cytosolic and luminal calcium.
    Allen GJ; Sanders D
    Plant J; 1996 Dec; 10(6):1055-69. PubMed ID: 9011087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of Spt7p in vacuolar polyphosphate level of Saccharomyces cerevisiae.
    Nishimura K; Yasumura K; Igarashi K; Kakinuma Y
    Biochem Biophys Res Commun; 1999 Apr; 257(3):835-8. PubMed ID: 10208869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperation of calcineurin and vacuolar H(+)-ATPase in intracellular Ca2+ homeostasis of yeast cells.
    Tanida I; Hasegawa A; Iida H; Ohya Y; Anraku Y
    J Biol Chem; 1995 Apr; 270(17):10113-9. PubMed ID: 7537264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inositol trisphosphate-dependent and -independent Ca2+ mobilization pathways at the vacuolar membrane of Candida albicans.
    Calvert CM; Sanders D
    J Biol Chem; 1995 Mar; 270(13):7272-80. PubMed ID: 7706267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vacuolar transporter Avt4 is involved in excretion of basic amino acids from the vacuoles of Saccharomyces cerevisiae.
    Sekito T; Chardwiriyapreecha S; Sugimoto N; Ishimoto M; Kawano-Kawada M; Kakinuma Y
    Biosci Biotechnol Biochem; 2014; 78(6):969-75. PubMed ID: 25036121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium-sensitive cls mutants of Saccharomyces cerevisiae showing a Pet- phenotype are ascribable to defects of vacuolar membrane H(+)-ATPase activity.
    Ohya Y; Umemoto N; Tanida I; Ohta A; Iida H; Anraku Y
    J Biol Chem; 1991 Jul; 266(21):13971-7. PubMed ID: 1830311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical properties of vacuolar zinc transport systems of Saccharomyces cerevisiae.
    MacDiarmid CW; Milanick MA; Eide DJ
    J Biol Chem; 2002 Oct; 277(42):39187-94. PubMed ID: 12161436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.