BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 8125966)

  • 1. Site-specific biotinylation of colicin Ia. A probe for protein conformation in the membrane.
    Qiu XQ; Jakes KS; Finkelstein A; Slatin SL
    J Biol Chem; 1994 Mar; 269(10):7483-8. PubMed ID: 8125966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Major transmembrane movement associated with colicin Ia channel gating.
    Qiu XQ; Jakes KS; Kienker PK; Finkelstein A; Slatin SL
    J Gen Physiol; 1996 Mar; 107(3):313-28. PubMed ID: 8868045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a translocated protein segment in a voltage-dependent channel.
    Slatin SL; Qiu XQ; Jakes KS; Finkelstein A
    Nature; 1994 Sep; 371(6493):158-61. PubMed ID: 7521016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmembrane insertion of the colicin Ia hydrophobic hairpin.
    Kienker PK; Qiu X; Slatin SL; Finkelstein A; Jakes KS
    J Membr Biol; 1997 May; 157(1):27-37. PubMed ID: 9141356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gating movements of colicin A and colicin Ia are different.
    Slatin SL; Duché D; Kienker PK; Baty D
    J Membr Biol; 2004 Nov; 202(2):73-83. PubMed ID: 15702371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein translocation across planar bilayers by the colicin Ia channel-forming domain: where will it end?
    Kienker PK; Jakes KS; Finkelstein A
    J Gen Physiol; 2000 Oct; 116(4):587-98. PubMed ID: 11004207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association.
    Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG
    Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a translocated gating charge in a voltage-dependent channel. Colicin E1 channels in planar phospholipid bilayer membranes.
    Abrams CK; Jakes KS; Finkelstein A; Slatin SL
    J Gen Physiol; 1991 Jul; 98(1):77-93. PubMed ID: 1719126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-directed mutagenesis of the charged residues near the carboxy terminus of the colicin E1 ion channel.
    Shiver JW; Cohen FS; Merrill AR; Cramer WA
    Biochemistry; 1988 Nov; 27(22):8421-8. PubMed ID: 2468358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intramembrane helix-helix interactions as the basis of inhibition of the colicin E1 ion channel by its immunity protein.
    Zhang YL; Cramer WA
    J Biol Chem; 1993 May; 268(14):10176-84. PubMed ID: 7683669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alteration of the pH-dependent ion selectivity of the colicin E1 channel by site-directed mutagenesis.
    Jakes KS; Abrams CK; Finkelstein A; Slatin SL
    J Biol Chem; 1990 Apr; 265(12):6984-91. PubMed ID: 1691183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A very short peptide makes a voltage-dependent ion channel: the critical length of the channel domain of colicin E1.
    Liu QR; Crozel V; Levinthal F; Slatin S; Finkelstein A; Levinthal C
    Proteins; 1986 Nov; 1(3):218-29. PubMed ID: 2453053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that the immunity protein inactivates colicin 5 immediately prior to the formation of the transmembrane channel.
    Pilsl H; Braun V
    J Bacteriol; 1995 Dec; 177(23):6966-72. PubMed ID: 7592492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gating of a voltage-dependent channel (colicin E1) in planar lipid bilayers: the role of protein translocation.
    Slatin SL; Raymond L; Finkelstein A
    J Membr Biol; 1986; 92(3):247-54. PubMed ID: 2431148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translocation of inserted foreign epitopes by a channel-forming protein.
    Jakes KS; Kienker PK; Slatin SL; Finkelstein A
    Proc Natl Acad Sci U S A; 1998 Apr; 95(8):4321-6. PubMed ID: 9539735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of channel-lining amino acid residues in the hydrophobic segment of colicin Ia.
    Kienker PK; Jakes KS; Finkelstein A
    J Gen Physiol; 2008 Dec; 132(6):693-707. PubMed ID: 19029376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel colicin 10: assignment of four domains to TonB- and TolC-dependent uptake via the Tsx receptor and to pore formation.
    Pilsl H; Braun V
    Mol Microbiol; 1995 Apr; 16(1):57-67. PubMed ID: 7651137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1.
    Elkins P; Bunker A; Cramer WA; Stauffacher CV
    Structure; 1997 Mar; 5(3):443-58. PubMed ID: 9083117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the explanation of the acidic pH requirement for in vitro activity of colicin E1. Site-directed mutagenesis at Glu-468.
    Shiver JW; Cramer WA; Cohen FS; Bishop LJ; de Jong PJ
    J Biol Chem; 1987 Oct; 262(29):14273-81. PubMed ID: 2443503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and dynamics of the colicin E1 channel.
    Cramer WA; Cohen FS; Merrill AR; Song HY
    Mol Microbiol; 1990 Apr; 4(4):519-26. PubMed ID: 1693745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.