These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 8126029)

  • 1. Effect of esterase on methacrylates and methacrylate polymers in an enzyme simulator for biodurability and biocompatibility testing.
    Bean TA; Zhuang WC; Tong PY; Eick JD; Yourtee DM
    J Biomed Mater Res; 1994 Jan; 28(1):59-63. PubMed ID: 8126029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The stability of methacrylate biomaterials when enzyme challenged: kinetic and systematic evaluations.
    Yourtee DM; Smith RE; Russo KA; Burmaster S; Cannon JM; Eick JD; Kostoryz EL
    J Biomed Mater Res; 2001 Dec; 57(4):522-31. PubMed ID: 11553882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Estimation of biocompatibility of fibers with large mechanical resistance].
    Zywicka B
    Polim Med; 2004; 34(3):3-48. PubMed ID: 15631154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels.
    Kimura M; Takai M; Ishihara K
    J Biomed Mater Res A; 2007 Jan; 80(1):45-54. PubMed ID: 16958047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro assessment of the enzymatic degradation of several starch based biomaterials.
    Azevedo HS; Gama FM; Reis RL
    Biomacromolecules; 2003; 4(6):1703-12. PubMed ID: 14606899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymers from functional macrolactones as potential biomaterials: enzymatic ring opening polymerization, biodegradation, and biocompatibility.
    van der Meulen I; de Geus M; Antheunis H; Deumens R; Joosten EA; Koning CE; Heise A
    Biomacromolecules; 2008 Dec; 9(12):3404-10. PubMed ID: 18975906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methacrylates in dental restorative materials.
    Henriks-Eckerman ML; Suuronen K; Jolanki R; Alanko K
    Contact Dermatitis; 2004 Apr; 50(4):233-7. PubMed ID: 15186380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microleakage and polymerization shrinkage of various polymer restorative materials.
    Gerdolle DA; Mortier E; Droz D
    J Dent Child (Chic); 2008; 75(2):125-33. PubMed ID: 18647507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wear of ten dental restorative materials in five wear simulators--results of a round robin test.
    Heintze SD; Zappini G; Rousson V
    Dent Mater; 2005 Apr; 21(4):304-17. PubMed ID: 15766577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of 2,3-epoxymethacrylic acid as an intermediate in the metabolism of dental materials in human liver microsomes.
    Seiss M; Nitz S; Kleinsasser N; Buters JT; Behrendt H; Hickel R; Reichl FX
    Dent Mater; 2007 Jan; 23(1):9-16. PubMed ID: 16458349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stoichiometry and Kinetics of Sequential Dimethacrylate Enzymolysis.
    Frukhtbeyn S; Van Dongen K; Sun J
    J Dent Res; 2019 Aug; 98(9):1037-1044. PubMed ID: 31329048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear bond strength between feldspathic CAD/CAM ceramic and human dentine for two adhesive cements.
    Graiff L; Piovan C; Vigolo P; Mason PN
    J Prosthodont; 2008 Jun; 17(4):294-9. PubMed ID: 18266655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From natural products to polymeric derivatives of "eugenol": a new approach for preparation of dental composites and orthopedic bone cements.
    Rojo L; Vazquez B; Parra J; López Bravo A; Deb S; San Roman J
    Biomacromolecules; 2006 Oct; 7(10):2751-61. PubMed ID: 17025349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of three different methods for the quantification of the in vitro wear of dental materials.
    Heintze SD; Cavalleri A; Forjanic M; Zellweger G; Rousson V
    Dent Mater; 2006 Nov; 22(11):1051-62. PubMed ID: 16386293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying enzyme activities within human saliva which are relevant to dental resin composite biodegradation.
    Lin BA; Jaffer F; Duff MD; Tang YW; Santerre JP
    Biomaterials; 2005 Jul; 26(20):4259-64. PubMed ID: 15683649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of anionic monomer content on the biodegradation and toxicity of polyvinyl-urethane carbonate-ceramic interpenetrating phase composites.
    Yang L; Hong J; Wang J; Pilliar RM; Santerre JP
    Biomaterials; 2005 Oct; 26(30):5951-9. PubMed ID: 15958241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of silorane dental monomers in aqueous systems.
    Eick JD; Smith RE; Pinzino CS; Kostoryz EL
    J Dent; 2006 Jul; 34(6):405-10. PubMed ID: 16288948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of different drying methods for single step adhesive systems on microleakage of tooth colored restorations.
    Owens BM
    J Contemp Dent Pract; 2003 Feb; 4(1):1-9. PubMed ID: 12595929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physicochemical characterisation and biological evaluation of hydrogel-poly(epsilon-caprolactone) interpenetrating polymer networks as novel urinary biomaterials.
    Jones DS; McLaughlin DW; McCoy CP; Gorman SP
    Biomaterials; 2005 May; 26(14):1761-70. PubMed ID: 15576150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copolymers of 2-methacryloyloxyethyl phosphorylcholine (MPC) as biomaterials.
    Nakabayashi N; Iwasaki Y
    Biomed Mater Eng; 2004; 14(4):345-54. PubMed ID: 15472384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.