These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 8126221)
1. ATP formation and ATP hydrolysis during fatiguing, intermittent stimulation of different types of single muscle fibres from Xenopus laevis. Nagesser AS; Van der Laarse WJ; Elzinga G J Muscle Res Cell Motil; 1993 Dec; 14(6):608-18. PubMed ID: 8126221 [TBL] [Abstract][Full Text] [Related]
2. Metabolic changes with fatigue in different types of single muscle fibres of Xenopus laevis. Nagesser AS; van der Laarse WJ; Elzinga G J Physiol; 1992 Mar; 448():511-23. PubMed ID: 1593475 [TBL] [Abstract][Full Text] [Related]
3. ATP utilization for calcium uptake and force production in skinned muscle fibres of Xenopus laevis. Stienen GJ; Zaremba R; Elzinga G J Physiol; 1995 Jan; 482 ( Pt 1)(Pt 1):109-22. PubMed ID: 7730976 [TBL] [Abstract][Full Text] [Related]
4. Changes in tetanic and resting [Ca2+]i during fatigue and recovery of single muscle fibres from Xenopus laevis. Lee JA; Westerblad H; Allen DG J Physiol; 1991 Feb; 433():307-26. PubMed ID: 1841942 [TBL] [Abstract][Full Text] [Related]
5. Mechanical relaxation rate and metabolism studied in fatiguing muscle by phosphorus nuclear magnetic resonance. Dawson MJ; Gadian DG; Wilkie DR J Physiol; 1980 Feb; 299():465-84. PubMed ID: 6966688 [TBL] [Abstract][Full Text] [Related]
6. Force relaxation, labile heat and parvalbumin content of skeletal muscle fibres of Xenopus laevis. Lännergren J; Elzinga G; Stienen GJ J Physiol; 1993 Apr; 463():123-40. PubMed ID: 8246178 [TBL] [Abstract][Full Text] [Related]
7. Slowing of relaxation and [Ca2+]i during prolonged tetanic stimulation of single fibres from Xenopus skeletal muscle. Westerblad H; Allen DG J Physiol; 1996 May; 492 ( Pt 3)(Pt 3):723-36. PubMed ID: 8734985 [TBL] [Abstract][Full Text] [Related]
8. Intracellular calcium and tension during fatigue in isolated single muscle fibres from Xenopus laevis. Allen DG; Lee JA; Westerblad H J Physiol; 1989 Aug; 415():433-58. PubMed ID: 2517988 [TBL] [Abstract][Full Text] [Related]
9. Changes of the force-velocity relation, isometric tension and relaxation rate during fatigue in intact, single fibres of Xenopus skeletal muscle. Westerblad H; Lännergren J J Muscle Res Cell Motil; 1994 Jun; 15(3):287-98. PubMed ID: 7929794 [TBL] [Abstract][Full Text] [Related]
10. Influence of ATP turnover and metabolite changes on IMP formation and glycolysis in rat skeletal muscle. Sahlin K; Gorski J; Edström L Am J Physiol; 1990 Sep; 259(3 Pt 1):C409-12. PubMed ID: 2399963 [TBL] [Abstract][Full Text] [Related]
11. Kinetics of ATP release and Pi binding during the ATPase cycle of lethocerus flight muscle fibres, using phosphate-water oxygen exchange. Webb MR; Lund J; Hunter JL; White DC J Muscle Res Cell Motil; 1991 Jun; 12(3):254-61. PubMed ID: 1831462 [TBL] [Abstract][Full Text] [Related]
12. Energetics studies of muscles of different types. Kushmerick MJ Basic Res Cardiol; 1987; 82 Suppl 2():17-30. PubMed ID: 3663016 [TBL] [Abstract][Full Text] [Related]
13. Oxygen consumption of single muscle fibres of Rana temporaria and Xenopus laevis at 20 degrees C. Elzinga G; van der Laarse WJ J Physiol; 1988 May; 399():405-18. PubMed ID: 3261341 [TBL] [Abstract][Full Text] [Related]
14. ATP content in single fibres from human skeletal muscle after electrical stimulation and during recovery. Söderlund K; Hultman E Acta Physiol Scand; 1990 Jul; 139(3):459-66. PubMed ID: 2239349 [TBL] [Abstract][Full Text] [Related]
15. The kinetics of magnesium adenosine triphosphate cleavage in skinned muscle fibres of the rabbit. Ferenczi MA; Homsher E; Trentham DR J Physiol; 1984 Jul; 352():575-99. PubMed ID: 6611412 [TBL] [Abstract][Full Text] [Related]
16. Relaxation from rigor by photolysis of caged-ATP in different types of muscle fibres from Xenopus laevis. Stienen GJ; Ferenczi MA J Muscle Res Cell Motil; 1991 Dec; 12(6):507-16. PubMed ID: 1791191 [TBL] [Abstract][Full Text] [Related]
17. Lactate efflux from fatigued fast-twitch muscle fibres of Xenopus laevis under various extracellular conditions. Nagesser AS; van der Laarse WJ; Elzinga G J Physiol; 1994 Nov; 481 ( Pt 1)(Pt 1):139-47. PubMed ID: 7853236 [TBL] [Abstract][Full Text] [Related]
18. Compartmentation of high-energy phosphates in resting and working rat skeletal muscle. Hebisch S; Soboll S; Schwenen M; Sies H Biochim Biophys Acta; 1984 Feb; 764(2):117-24. PubMed ID: 6696884 [TBL] [Abstract][Full Text] [Related]
19. Some properties of the contractile system and sarcoplasmic reticulum of skinned slow fibres from Xenopus muscle. Horiuti K J Physiol; 1986 Apr; 373():1-23. PubMed ID: 2427691 [TBL] [Abstract][Full Text] [Related]
20. Effects of adenosine diphosphate on Ca2+ fluxes and Ca2+ accumulation of sarcoplasmic reticulum. Lau YH Biochim Biophys Acta; 1983 May; 730(2):276-84. PubMed ID: 6221760 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]