BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 8126999)

  • 1. Complex subcellular distribution of sodium-dependent amino acid transport systems in kidney cortex and LLC-PK1/Cl4 cells.
    Hensley CB; Mircheff AK
    Kidney Int; 1994 Jan; 45(1):110-22. PubMed ID: 8126999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric distribution of the Na+/H+ antiporter in the renal proximal tubule epithelial cell.
    Ives HE; Yee VJ; Warnock DG
    J Biol Chem; 1983 Nov; 258(22):13513-6. PubMed ID: 6315699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of amino acids in renal brush border membrane vesicles. Uptake of the neutral amino acid L-alanine.
    Fass SJ; Hammerman MR; Sacktor B
    J Biol Chem; 1977 Jan; 252(2):583-90. PubMed ID: 833145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacologically different Na/H antiporters on the apical and basolateral surfaces of cultured porcine kidney cells (LLC-PK1).
    Haggerty JG; Agarwal N; Reilly RF; Adelberg EA; Slayman CW
    Proc Natl Acad Sci U S A; 1988 Sep; 85(18):6797-801. PubMed ID: 2901105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolution of apical and basal-lateral membrane populations from rat exorbital gland.
    Mircheff AK; Lu CC; Conteas CN
    Am J Physiol; 1983 Nov; 245(5 Pt 1):G661-7. PubMed ID: 6314824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of ifosfamide metabolites on sodium-dependent phosphate transport in a model of proximal tubular cells (LLC-PK1) in culture.
    Mohrmann M; Pauli A; Walkenhorst H; Schönfeld B; Brandis M
    Ren Physiol Biochem; 1993; 16(6):285-98. PubMed ID: 7506438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na+/H+ antiporter in membrane populations resolved from a renal brush border vesicle preparation.
    Mircheff AK; Ives HE; Yee VJ; Warnock DG
    Am J Physiol; 1984 Jun; 246(6 Pt 2):F853-8. PubMed ID: 6331175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of sodium-dependent transport systems in LLC-PK1 cells by metabolites of ifosfamide.
    Mohrmann M; Pauli A; Ritzer M; Schönfeld B; Seifert B; Brandis M
    Ren Physiol Biochem; 1992; 15(6):289-301. PubMed ID: 1282722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subcellular distribution of Na+/H+ antiport activity in rat renal cortex.
    Hensley CB; Bradley ME; Mircheff AK
    Kidney Int; 1990 Feb; 37(2):707-16. PubMed ID: 2155341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid redistribution and inhibition of renal sodium transporters during acute pressure natriuresis.
    Zhang Y; Mircheff AK; Hensley CB; Magyar CE; Warnock DG; Chambrey R; Yip KP; Marsh DJ; Holstein-Rathlou NH; McDonough AA
    Am J Physiol; 1996 Jun; 270(6 Pt 2):F1004-14. PubMed ID: 8764320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the distribution of Na+/H+ exchanger isoforms among the plasma membrane subfractions of bovine kidney cortex: reevaluation of methods for fractionating the brush-border and the basolateral membranes.
    Yoshioka S; Suzuki T; Kawakita M
    J Biochem; 1997 Sep; 122(3):641-6. PubMed ID: 9348096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperglycemia-induced changes in Na+/myo-inositol transport, Na(+)-K(+)-ATPase, and protein kinase C activity in proximal tubule cells.
    Cole JA; Walker RE; Yordy MR
    Diabetes; 1995 Apr; 44(4):446-52. PubMed ID: 7698515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basal-lateral membranes from rabbit renal cortex prepared on a large scale in a zonal rotor.
    Mamelok RD; Tse SS; Newcomb K; Bildstein CL; Liu D
    Biochim Biophys Acta; 1982 Oct; 692(1):115-25. PubMed ID: 6293559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical isolation of plasma membranes of intestinal epithelial cells: identification of Na, K-ATPase rich membranes and the distribution of enzyme activities.
    Mircheff AK; Wright EM
    J Membr Biol; 1976 Sep; 28(4):309-33. PubMed ID: 136516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidant-induced alterations in glucose and phosphate transport in LLC-PK1 cells: mechanisms of injury.
    Andreoli SP; McAteer JA; Seifert SA; Kempson SA
    Am J Physiol; 1993 Sep; 265(3 Pt 2):F377-84. PubMed ID: 8214096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of cardiac glycosides on sodium pump expression and function in LLC-PK1 and MDCK cells.
    Liu J; Periyasamy SM; Gunning W; Fedorova OV; Bagrov AY; Malhotra D; Xie Z; Shapiro JI
    Kidney Int; 2002 Dec; 62(6):2118-25. PubMed ID: 12427136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na+-coupled alanine transport in LLC-PK1 cells: the relationship between the Km for Na+ at low [Alanine] and potential dependence for the system.
    Wilson JJ; Randles J; Kimmich GA
    J Membr Biol; 1998 Oct; 165(3):275-82. PubMed ID: 9767681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of Na(+)-independent amino acid transport in Xenopus laevis oocytes by injection of rabbit kidney cortex mRNA.
    Bertran J; Werner A; Stange G; Markovich D; Biber J; Testar X; Zorzano A; Palacin M; Murer H
    Biochem J; 1992 Feb; 281 ( Pt 3)(Pt 3):717-23. PubMed ID: 1536650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarity of taurine transport in cultured renal epithelial cell lines: LLC-PK1 and MDCK.
    Jones DP; Miller LA; Chesney RW
    Am J Physiol; 1993 Jul; 265(1 Pt 2):F137-45. PubMed ID: 8342611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Membrane function of the kidney].
    Kinne R
    Bull Schweiz Akad Med Wiss; 1976 Dec; 32(4-6):251-76. PubMed ID: 137758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.