These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 8126999)

  • 1. Complex subcellular distribution of sodium-dependent amino acid transport systems in kidney cortex and LLC-PK1/Cl4 cells.
    Hensley CB; Mircheff AK
    Kidney Int; 1994 Jan; 45(1):110-22. PubMed ID: 8126999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric distribution of the Na+/H+ antiporter in the renal proximal tubule epithelial cell.
    Ives HE; Yee VJ; Warnock DG
    J Biol Chem; 1983 Nov; 258(22):13513-6. PubMed ID: 6315699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of amino acids in renal brush border membrane vesicles. Uptake of the neutral amino acid L-alanine.
    Fass SJ; Hammerman MR; Sacktor B
    J Biol Chem; 1977 Jan; 252(2):583-90. PubMed ID: 833145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacologically different Na/H antiporters on the apical and basolateral surfaces of cultured porcine kidney cells (LLC-PK1).
    Haggerty JG; Agarwal N; Reilly RF; Adelberg EA; Slayman CW
    Proc Natl Acad Sci U S A; 1988 Sep; 85(18):6797-801. PubMed ID: 2901105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolution of apical and basal-lateral membrane populations from rat exorbital gland.
    Mircheff AK; Lu CC; Conteas CN
    Am J Physiol; 1983 Nov; 245(5 Pt 1):G661-7. PubMed ID: 6314824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of ifosfamide metabolites on sodium-dependent phosphate transport in a model of proximal tubular cells (LLC-PK1) in culture.
    Mohrmann M; Pauli A; Walkenhorst H; Schönfeld B; Brandis M
    Ren Physiol Biochem; 1993; 16(6):285-98. PubMed ID: 7506438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na+/H+ antiporter in membrane populations resolved from a renal brush border vesicle preparation.
    Mircheff AK; Ives HE; Yee VJ; Warnock DG
    Am J Physiol; 1984 Jun; 246(6 Pt 2):F853-8. PubMed ID: 6331175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of sodium-dependent transport systems in LLC-PK1 cells by metabolites of ifosfamide.
    Mohrmann M; Pauli A; Ritzer M; Schönfeld B; Seifert B; Brandis M
    Ren Physiol Biochem; 1992; 15(6):289-301. PubMed ID: 1282722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subcellular distribution of Na+/H+ antiport activity in rat renal cortex.
    Hensley CB; Bradley ME; Mircheff AK
    Kidney Int; 1990 Feb; 37(2):707-16. PubMed ID: 2155341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid redistribution and inhibition of renal sodium transporters during acute pressure natriuresis.
    Zhang Y; Mircheff AK; Hensley CB; Magyar CE; Warnock DG; Chambrey R; Yip KP; Marsh DJ; Holstein-Rathlou NH; McDonough AA
    Am J Physiol; 1996 Jun; 270(6 Pt 2):F1004-14. PubMed ID: 8764320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the distribution of Na+/H+ exchanger isoforms among the plasma membrane subfractions of bovine kidney cortex: reevaluation of methods for fractionating the brush-border and the basolateral membranes.
    Yoshioka S; Suzuki T; Kawakita M
    J Biochem; 1997 Sep; 122(3):641-6. PubMed ID: 9348096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperglycemia-induced changes in Na+/myo-inositol transport, Na(+)-K(+)-ATPase, and protein kinase C activity in proximal tubule cells.
    Cole JA; Walker RE; Yordy MR
    Diabetes; 1995 Apr; 44(4):446-52. PubMed ID: 7698515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basal-lateral membranes from rabbit renal cortex prepared on a large scale in a zonal rotor.
    Mamelok RD; Tse SS; Newcomb K; Bildstein CL; Liu D
    Biochim Biophys Acta; 1982 Oct; 692(1):115-25. PubMed ID: 6293559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical isolation of plasma membranes of intestinal epithelial cells: identification of Na, K-ATPase rich membranes and the distribution of enzyme activities.
    Mircheff AK; Wright EM
    J Membr Biol; 1976 Sep; 28(4):309-33. PubMed ID: 136516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidant-induced alterations in glucose and phosphate transport in LLC-PK1 cells: mechanisms of injury.
    Andreoli SP; McAteer JA; Seifert SA; Kempson SA
    Am J Physiol; 1993 Sep; 265(3 Pt 2):F377-84. PubMed ID: 8214096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of cardiac glycosides on sodium pump expression and function in LLC-PK1 and MDCK cells.
    Liu J; Periyasamy SM; Gunning W; Fedorova OV; Bagrov AY; Malhotra D; Xie Z; Shapiro JI
    Kidney Int; 2002 Dec; 62(6):2118-25. PubMed ID: 12427136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na+-coupled alanine transport in LLC-PK1 cells: the relationship between the Km for Na+ at low [Alanine] and potential dependence for the system.
    Wilson JJ; Randles J; Kimmich GA
    J Membr Biol; 1998 Oct; 165(3):275-82. PubMed ID: 9767681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of Na(+)-independent amino acid transport in Xenopus laevis oocytes by injection of rabbit kidney cortex mRNA.
    Bertran J; Werner A; Stange G; Markovich D; Biber J; Testar X; Zorzano A; Palacin M; Murer H
    Biochem J; 1992 Feb; 281 ( Pt 3)(Pt 3):717-23. PubMed ID: 1536650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarity of taurine transport in cultured renal epithelial cell lines: LLC-PK1 and MDCK.
    Jones DP; Miller LA; Chesney RW
    Am J Physiol; 1993 Jul; 265(1 Pt 2):F137-45. PubMed ID: 8342611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Membrane function of the kidney].
    Kinne R
    Bull Schweiz Akad Med Wiss; 1976 Dec; 32(4-6):251-76. PubMed ID: 137758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.