These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 812700)

  • 1. Nitration of tyrosyl residues in human alpha-lactalbumin. Effect on lactose synthase specifier activity.
    Prieels JP; Dolmans M; Leonis J; Brew K
    Eur J Biochem; 1975 Dec; 60(2):533-9. PubMed ID: 812700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topography of all tyrosine residues in subtilisin DY.
    Lilova A; Kleinschmidt T; Nedkov P; Braunitzer G
    Biol Chem Hoppe Seyler; 1986 Sep; 367(9):861-70. PubMed ID: 3539144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction of tetranitromethane with lutropin, oxytocin, and vasopressin.
    Burleigh BD; Liu WK; Ward DN
    J Biol Chem; 1976 Jan; 251(2):308-15. PubMed ID: 1245474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of bovine alpha-lactalbumin with N-bromosuccinimide and 2-hydroxy-5-nitrobenzylbromide.
    Bell JE; Castellino FJ; Trayer IP; Hill RL
    J Biol Chem; 1975 Oct; 250(19):7579-85. PubMed ID: 809437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectrophotometric pH titrations and nitration with tetranitromethane of the tyrosyl residues in yeast phosphoglycerate kinase.
    Hjelmgren T; Arvidsson L; Larsson-Raźnikiewicz M
    Biochim Biophys Acta; 1976 Sep; 445(2):342-9. PubMed ID: 8144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preferential nitration with tetranitromethane of a specific tyrosine residue in penicillinase from Staphylococcus aureus PCl. Evidence that the preferentially nitrated residue is not part of the active site but that loss of activity is due to intermolecular cross-linking.
    Bristow AF; Virden R
    Biochem J; 1978 Feb; 169(2):381-8. PubMed ID: 629760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of papain with tetranitromethane.
    Tsukamoto S; Ohno M
    J Biochem; 1978 Dec; 84(6):1625-32. PubMed ID: 739010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical modification of phosphorylase b by tetranitromethane. Identification of a functional tyrosyl residue.
    Caruso C; Cacace MG; Di Prisco G
    Eur J Biochem; 1987 Aug; 166(3):547-52. PubMed ID: 3111849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical modification of human alpha 1-proteinase inhibitor by tetranitromethane. Structure-function relationship.
    Mierzwa S; Chan SK
    Biochem J; 1987 Aug; 246(1):37-42. PubMed ID: 3499901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of tyrosine residues in the function of bacteriorhodopsin. Specific nitration of tyrosine 26.
    Lemke HD; Oesterhelt D
    Eur J Biochem; 1981 Apr; 115(3):595-604. PubMed ID: 7016540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exposed tyrosine residues of lambda cro repressor protein evidenced by nitration and photo CIDNP experiments.
    Shirakawa M; Kawata Y; Lee SJ; Akutsu H; Sakiyama F; Kyogoku Y
    J Biochem; 1985 Sep; 98(3):799-805. PubMed ID: 3910646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of tyrosine residues in human alpha-lactalbumin: effect upon the lactose-synthase specifier activity.
    Prieels JP; Dolmans M; Léonis J; Brew K
    Arch Int Physiol Biochim; 1974 Dec; 82(5):1003-5. PubMed ID: 4142683
    [No Abstract]   [Full Text] [Related]  

  • 13. Nitration of the tyrosine residues of porcine pancreatic colipase with tetranitromethane, and properties of the nitrated derivatives.
    De Caro JD; Behnke WD; Bonicel JJ; Desnuelle PA; Rovery M
    Biochim Biophys Acta; 1983 Sep; 747(3):253-62. PubMed ID: 6615844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The phosphoenolpyruvate-dependent phosphotransferase system of Staphylococcus aureus. Complete tyrosine assignments in the 1H nuclear-magnetic-resonance spectrum of the phosphocarrier protein HPr.
    Schmidt-Aderjan U; Rösch P; Frank R; Hengstenberg W
    Eur J Biochem; 1979 May; 96(1):43-8. PubMed ID: 456367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The isolation of glyco-alpha-lactalbumins from some ruminant milks.
    Prieels JP; Cludts M; Dolmans M; Léonis J
    Arch Int Physiol Biochim; 1974 Feb; 82(1):194. PubMed ID: 4137279
    [No Abstract]   [Full Text] [Related]  

  • 16. Reaction of human chorionic somatomammotropin and human pituitary growth hormone with tetranitromethane at 0 degrees C.
    Kawauchi H; Li CH
    Arch Biochem Biophys; 1974 Nov; 165(1):255-62. PubMed ID: 4216294
    [No Abstract]   [Full Text] [Related]  

  • 17. Lactose synthase. An investigation of the interaction site of alpha-lactalbumin for galactosyltransferase by differential kinetic labeling.
    Richardson RH; Brew K
    J Biol Chem; 1980 Apr; 255(8):3377-85. PubMed ID: 6767715
    [No Abstract]   [Full Text] [Related]  

  • 18. Heterogeneity in alpha-lactalbumins. I. Human alpha-lactalbumin.
    Prieels JP; Schlusselberg J
    Biochim Biophys Acta; 1977 Mar; 491(1):76-81. PubMed ID: 14703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical modification of carboxypeptidase A crystals. Nitration of tyrosine-248.
    Muszynska G; Riordan JF
    Biochemistry; 1976 Jan; 15(1):46-51. PubMed ID: 942853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The preparation of 3-nitrotyrosyl derivatives of three elapid venom cardiotoxins.
    Carlsson FH
    Biochim Biophys Acta; 1980 Aug; 624(2):460-72. PubMed ID: 7417487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.