BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

504 related articles for article (PubMed ID: 8128219)

  • 21. Crystal structure of the catalytic domain of human MAP kinase phosphatase 5: structural insight into constitutively active phosphatase.
    Jeong DG; Yoon TS; Kim JH; Shim MY; Jung SK; Son JH; Ryu SE; Kim SJ
    J Mol Biol; 2006 Jul; 360(5):946-55. PubMed ID: 16806267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Site-directed mutagenesis, kinetic, and spectroscopic studies of the P-loop residues in a low molecular weight protein tyrosine phosphatase.
    Evans B; Tishmack PA; Pokalsky C; Zhang M; Van Etten RL
    Biochemistry; 1996 Oct; 35(42):13609-17. PubMed ID: 8885840
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structure of Yersinia protein tyrosine phosphatase at 2.5 A and the complex with tungstate.
    Stuckey JA; Schubert HL; Fauman EB; Zhang ZY; Dixon JE; Saper MA
    Nature; 1994 Aug; 370(6490):571-5. PubMed ID: 8052312
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural basis for inhibition of the protein tyrosine phosphatase 1B by phosphotyrosine peptide mimetics.
    Groves MR; Yao ZJ; Roller PP; Burke TR; Barford D
    Biochemistry; 1998 Dec; 37(51):17773-83. PubMed ID: 9922143
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzyme-substrate interactions revealed by the crystal structures of the archaeal Sulfolobus PTP-fold phosphatase and its phosphopeptide complexes.
    Chu HM; Wang AH
    Proteins; 2007 Mar; 66(4):996-1003. PubMed ID: 17173287
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structure of the MAPK phosphatase Pyst1 catalytic domain and implications for regulated activation.
    Stewart AE; Dowd S; Keyse SM; McDonald NQ
    Nat Struct Biol; 1999 Feb; 6(2):174-81. PubMed ID: 10048930
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of "substrate-trapping" mutants to identify physiological substrates of protein tyrosine phosphatases.
    Flint AJ; Tiganis T; Barford D; Tonks NK
    Proc Natl Acad Sci U S A; 1997 Mar; 94(5):1680-5. PubMed ID: 9050838
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The structure of the cell cycle protein Cdc14 reveals a proline-directed protein phosphatase.
    Gray CH; Good VM; Tonks NK; Barford D
    EMBO J; 2003 Jul; 22(14):3524-35. PubMed ID: 12853468
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The crystal structure of human receptor protein tyrosine phosphatase kappa phosphatase domain 1.
    Eswaran J; Debreczeni JE; Longman E; Barr AJ; Knapp S
    Protein Sci; 2006 Jun; 15(6):1500-5. PubMed ID: 16672235
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal structure of the catalytic subunit of Cdc25B required for G2/M phase transition of the cell cycle.
    Reynolds RA; Yem AW; Wolfe CL; Deibel MR; Chidester CG; Watenpaugh KD
    J Mol Biol; 1999 Oct; 293(3):559-68. PubMed ID: 10543950
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional characterization of the low-molecular-mass phosphotyrosine-protein phosphatase of Acinetobacter johnsonii.
    Grangeasse C; Doublet P; Vincent C; Vaganay E; Riberty M; Duclos B; Cozzone AJ
    J Mol Biol; 1998 May; 278(2):339-47. PubMed ID: 9571056
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structure of the catalytic subunit of human protein phosphatase 1 and its complex with tungstate.
    Egloff MP; Cohen PT; Reinemer P; Barford D
    J Mol Biol; 1995 Dec; 254(5):942-59. PubMed ID: 7500362
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal structure of diaminopelargonic acid synthase: evolutionary relationships between pyridoxal-5'-phosphate-dependent enzymes.
    Käck H; Sandmark J; Gibson K; Schneider G; Lindqvist Y
    J Mol Biol; 1999 Aug; 291(4):857-76. PubMed ID: 10452893
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural and biochemical characterization of Siw14: A protein-tyrosine phosphatase fold that metabolizes inositol pyrophosphates.
    Wang H; Gu C; Rolfes RJ; Jessen HJ; Shears SB
    J Biol Chem; 2018 May; 293(18):6905-6914. PubMed ID: 29540476
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structures and inhibitor identification for PTPN5, PTPRR and PTPN7: a family of human MAPK-specific protein tyrosine phosphatases.
    Eswaran J; von Kries JP; Marsden B; Longman E; Debreczeni JE; Ugochukwu E; Turnbull A; Lee WH; Knapp S; Barr AJ
    Biochem J; 2006 May; 395(3):483-91. PubMed ID: 16441242
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanistic studies on protein tyrosine phosphatases.
    Zhang ZY
    Prog Nucleic Acid Res Mol Biol; 2003; 73():171-220. PubMed ID: 12882518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diverse levels of sequence selectivity and catalytic efficiency of protein-tyrosine phosphatases.
    Selner NG; Luechapanichkul R; Chen X; Neel BG; Zhang ZY; Knapp S; Bell CE; Pei D
    Biochemistry; 2014 Jan; 53(2):397-412. PubMed ID: 24359314
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The phosphatase domains of LAR, CD45, and PTP1B: structural correlations with peptide-based inhibitors.
    Glover NR; Tracey AS
    Biochem Cell Biol; 2000; 78(1):39-50. PubMed ID: 10735562
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mycobacterium tuberculosis protein tyrosine phosphatase PtpB structure reveals a diverged fold and a buried active site.
    Grundner C; Ng HL; Alber T
    Structure; 2005 Nov; 13(11):1625-34. PubMed ID: 16271885
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The structural basis for the selectivity of benzotriazole inhibitors of PTP1B.
    Scapin G; Patel SB; Becker JW; Wang Q; Desponts C; Waddleton D; Skorey K; Cromlish W; Bayly C; Therien M; Gauthier JY; Li CS; Lau CK; Ramachandran C; Kennedy BP; Asante-Appiah E
    Biochemistry; 2003 Oct; 42(39):11451-9. PubMed ID: 14516196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.