BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 8128250)

  • 1. Long-range cis preference in DNA homology search over the length of a Drosophila chromosome.
    Engels WR; Preston CR; Johnson-Schlitz DM
    Science; 1994 Mar; 263(5153):1623-5. PubMed ID: 8128250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA homology requirements for mitotic gap repair in Drosophila.
    Nassif N; Engels W
    Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1262-6. PubMed ID: 8381961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HeT-A, a transposable element specifically involved in "healing" broken chromosome ends in Drosophila melanogaster.
    Biessmann H; Valgeirsdottir K; Lofsky A; Chin C; Ginther B; Levis RW; Pardue ML
    Mol Cell Biol; 1992 Sep; 12(9):3910-8. PubMed ID: 1324409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient gap repair in Drosophila melanogaster requires a maximum of 31 nucleotides of homologous sequence at the searching ends.
    Keeler KJ; Gloor GB
    Mol Cell Biol; 1997 Feb; 17(2):627-34. PubMed ID: 9001216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Addition of telomere-associated HeT DNA sequences "heals" broken chromosome ends in Drosophila.
    Biessmann H; Mason JM; Ferry K; d'Hulst M; Valgeirsdottir K; Traverse KL; Pardue ML
    Cell; 1990 May; 61(4):663-73. PubMed ID: 2111731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequent transpositions of Drosophila melanogaster HeT-A transposable elements to receding chromosome ends.
    Biessmann H; Champion LE; O'Hair M; Ikenaga K; Kasravi B; Mason JM
    EMBO J; 1992 Dec; 11(12):4459-69. PubMed ID: 1330538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Su(Hw) chromatin insulator protein alters double-strand break repair frequencies in the Drosophila germ line.
    Lankenau DH; Peluso MV; Lankenau S
    Chromosoma; 2000; 109(1-2):148-60. PubMed ID: 10855506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of heterologous insertions on gene conversion in mitotically dividing cells in Drosophila melanogaster.
    Coveny AM; Dray T; Gloor GB
    Genetics; 2002 May; 161(1):249-58. PubMed ID: 12019238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-frequency P element loss in Drosophila is homolog dependent.
    Engels WR; Johnson-Schlitz DM; Eggleston WB; Sved J
    Cell; 1990 Aug; 62(3):515-25. PubMed ID: 2165865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. P-element-induced interallelic gene conversion of insertions and deletions in Drosophila melanogaster.
    Johnson-Schlitz DM; Engels WR
    Mol Cell Biol; 1993 Nov; 13(11):7006-18. PubMed ID: 8413290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The homologous chromosome is an effective template for the repair of mitotic DNA double-strand breaks in Drosophila.
    Rong YS; Golic KG
    Genetics; 2003 Dec; 165(4):1831-42. PubMed ID: 14704169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancer-trap targeting at the Broad-Complex locus of Drosophila melanogaster.
    Gonzy-Tréboul G; Lepesant JA; Deutsch J
    Genes Dev; 1995 May; 9(9):1137-48. PubMed ID: 7744254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broken chromosomal ends can be elongated by conversion in Drosophila melanogaster.
    Mikhailovsky S; Belenkaya T; Georgiev P
    Chromosoma; 1999 May; 108(2):114-20. PubMed ID: 10382073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequences homologous to the hobo transposable element in E strains of Drosophila melanogaster.
    Galindo MI; Bigot Y; Sánchez MD; Periquet G; Pascual L
    Mol Biol Evol; 2001 Aug; 18(8):1532-9. PubMed ID: 11470844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of two active HeT-A retroposons of Drosophila melanogaster.
    Biessmann H; Kasravi B; Bui T; Fujiwara G; Champion LE; Mason JM
    Chromosoma; 1994 Apr; 103(2):90-8. PubMed ID: 8055715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homology requirements for targeting heterologous sequences during P-induced gap repair in Drosophila melanogaster.
    Dray T; Gloor GB
    Genetics; 1997 Oct; 147(2):689-99. PubMed ID: 9335605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gypsy homologous sequences in Drosophila subobscura (gypsyDS).
    Alberola TM; de Frutos R
    J Mol Evol; 1993 Feb; 36(2):127-35. PubMed ID: 8381880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From sequence to chromosome: the tip of the X chromosome of D. melanogaster.
    Benos PV; Gatt MK; Ashburner M; Murphy L; Harris D; Barrell B; Ferraz C; Vidal S; Brun C; Demailles J; Cadieu E; Dreano S; Gloux S; Lelaure V; Mottier S; Galibert F; Borkova D; Minana B; Kafatos FC; Louis C; Sidén-Kiamos I; Bolshakov S; Papagiannakis G; Spanos L; Cox S; Madueño E; de Pablos B; Modolell J; Peter A; Schöttler P; Werner M; Mourkioti F; Beinert N; Dowe G; Schäfer U; Jäckle H; Bucheton A; Callister DM; Campbell LA; Darlamitsou A; Henderson NS; McMillan PJ; Salles C; Tait EA; Valenti P; Saunder RD; Glover DM
    Science; 2000 Mar; 287(5461):2220-2. PubMed ID: 10731137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An efficient method to generate chromosomal rearrangements by targeted DNA double-strand breaks in Drosophila melanogaster.
    Egli D; Hafen E; Schaffner W
    Genome Res; 2004 Jul; 14(7):1382-93. PubMed ID: 15197166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The characterization of DINE-1, a short, interspersed repetitive element present on chromosome and in the centric heterochromatin of Drosophila melanogaster.
    Locke J; Howard LT; Aippersbach N; Podemski L; Hodgetts RB
    Chromosoma; 1999 Nov; 108(6):356-66. PubMed ID: 10591995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.