BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 8129891)

  • 1. Correlation between amino acid composition and ultrastructural features of type I and type II native collagen fibrils.
    Ortolani F; Marchini M
    Boll Soc Ital Biol Sper; 1993 Feb; 69(2):99-106. PubMed ID: 8129891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model for type II collagen fibrils: distinctive D-band patterns in native and reconstituted fibrils compared with sequence data for helix and telopeptide domains.
    Ortolani F; Giordano M; Marchini M
    Biopolymers; 2000 Nov; 54(6):448-63. PubMed ID: 10951330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "GA-banding": a new terminology and a study of the glutaraldehyde-induced band pattern of type I collagen fibrils.
    Ortolani F; Marchini M
    Boll Soc Ital Biol Sper; 1993 Jan; 69(1):49-55. PubMed ID: 8329191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cartilage type II collagen fibrils show distinctive negative-staining band patterns differences between type II and type I unfixed or glutaraldehyde-fixed collagen fibrils.
    Ortolani F; Marchini M
    J Electron Microsc (Tokyo); 1995 Oct; 44(5):365-75. PubMed ID: 8568450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutaraldehyde-induced D-band pattern of type II collagen fibrils as revealed by negative staining.
    Ortolani F; Marchini M
    Boll Soc Ital Biol Sper; 1993 Feb; 69(2):107-13. PubMed ID: 8129883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlations between amino acid hydrophobicity scales and stain exclusion capacity of type 1 collagen fibrils.
    Ortolani F; Raspanti M; Marchini M
    J Electron Microsc (Tokyo); 1994 Feb; 43(1):32-8. PubMed ID: 11407414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Negative staining and genesis of D-periodicity in native collagen fibrils.
    Ortolani F; Raspanti M; Marchini M
    Eur J Basic Appl Histochem; 1991; 35(1):45-60. PubMed ID: 1713789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Axial structure of the heterotypic collagen fibrils of vitreous humour and cartilage.
    Bos KJ; Holmes DF; Kadler KE; McLeod D; Morris NP; Bishop PN
    J Mol Biol; 2001 Mar; 306(5):1011-22. PubMed ID: 11237615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collagen-glutaraldehyde interaction as revealed by the D-banding of negatively stained fibrils and computer-drawn band patterns.
    Marchini M; Ortolani F; Raspanti M
    Eur J Histochem; 1993; 37(4):363-73. PubMed ID: 7510543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fourier analysis of electron micrographs of positively stained collagen fibrils: application to type I and II collagen typing.
    Ronzière MC; Herbage B; Herbage D; Bernengo JC
    Int J Biol Macromol; 1998 Oct; 23(3):207-13. PubMed ID: 9777708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Further evidence for the correlation between the primary structure and the stain exclusion banding pattern of the segment-long-spacing crystallites of collagen.
    Kobayashi K; Hashimoto Y; Hayakawa T; Hoshino T
    J Ultrastruct Mol Struct Res; 1988 Sep; 100(3):255-62. PubMed ID: 2468721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructural studies on the collagen of the marine sponge Chondrosia reniformis Nardo.
    Heinemann S; Ehrlich H; Douglas T; Heinemann C; Worch H; Schatton W; Hanke T
    Biomacromolecules; 2007 Nov; 8(11):3452-7. PubMed ID: 17944515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular structure and functional morphology of echinoderm collagen fibrils.
    Trotter JA; Thurmond FA; Koob TJ
    Cell Tissue Res; 1994 Mar; 275(3):451-8. PubMed ID: 8137396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative analysis of the mechanism of negative staining with native collagen fibrils and polar tropomyosin paracrystals.
    Katayama E; Nonomura Y
    J Biochem; 1979 Nov; 86(5):1495-509. PubMed ID: 521442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Two possible mechanisms for forming supramolecular structures of the collagen type].
    Mikhaĭlov AN; Titova EF; Belavtseva EM
    Biofizika; 1979; 24(3):438-41. PubMed ID: 465550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of axial banding patterns in fibrils of type V collagen and type I collagen.
    Adachi E; Hayashi T
    Coll Relat Res; 1987 Apr; 7(1):27-38. PubMed ID: 3608403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image analysis of mineralized and non-mineralized type I collagen fibrils.
    Arsenault AL
    J Electron Microsc Tech; 1991 Jul; 18(3):262-8. PubMed ID: 1880599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Symmetrically banded collagen fibrils: observations on a new cross striation pattern in vivo.
    Mallinger R; Kulnig W; Böck P
    Anat Rec; 1992 Jan; 232(1):45-51. PubMed ID: 1536464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The staining pattern of collagen fibrils. Improved correlation with sequence data.
    Meek KM; Chapman JA; Hardcastle RA
    J Biol Chem; 1979 Nov; 254(21):10710-4. PubMed ID: 91606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative electron-microscope studies on type-III and type-I collagens.
    Wiedemann H; Chung E; Fujii T; Miller EJ; Kühn K
    Eur J Biochem; 1975 Feb; 51(2):363-8. PubMed ID: 1171009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.