These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 8129953)

  • 61. Two new pepsin proteases of microbial origin.
    Pugsley AP
    Microbiol Sci; 1988 Jun; 5(6):190-1. PubMed ID: 3079238
    [No Abstract]   [Full Text] [Related]  

  • 62. [Intracellular proteolysis].
    Duque-Magalhães MC
    Biochimie; 1984; 66(11-12):653-62. PubMed ID: 6398709
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Deubiquitination step in the endocytic pathway of yeast plasma membrane proteins: crucial role of Doa4p ubiquitin isopeptidase.
    Dupré S; Haguenauer-Tsapis R
    Mol Cell Biol; 2001 Jul; 21(14):4482-94. PubMed ID: 11416128
    [TBL] [Abstract][Full Text] [Related]  

  • 64. In vitro reconstitution of intercompartmental protein transport to the yeast vacuole.
    Vida TA; Graham TR; Emr SD
    J Cell Biol; 1990 Dec; 111(6 Pt 2):2871-84. PubMed ID: 2269659
    [TBL] [Abstract][Full Text] [Related]  

  • 65. VPS21 controls entry of endocytosed and biosynthetic proteins into the yeast prevacuolar compartment.
    Gerrard SR; Bryant NJ; Stevens TH
    Mol Biol Cell; 2000 Feb; 11(2):613-26. PubMed ID: 10679018
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The yeast homolog of H < beta > 58, a mouse gene essential for embryogenesis, performs a role in the delivery of proteins to the vacuole.
    Bachhawat AK; Suhan J; Jones EW
    Genes Dev; 1994 Jun; 8(12):1379-87. PubMed ID: 7926738
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A unique vacuolar processing enzyme responsible for conversion of several proprotein precursors into the mature forms.
    Hara-Nishimura I; Inoue K; Nishimura M
    FEBS Lett; 1991 Dec; 294(1-2):89-93. PubMed ID: 1743299
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Catabolite inactivation of the galactose transporter in the yeast Saccharomyces cerevisiae: ubiquitination, endocytosis, and degradation in the vacuole.
    Horak J; Wolf DH
    J Bacteriol; 1997 Mar; 179(5):1541-9. PubMed ID: 9045811
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Expression of human lysosomal beta-hexosaminidase in yeast vacuoles.
    Prezant TR
    Biochem Biophys Res Commun; 1990 Jul; 170(1):383-90. PubMed ID: 2142595
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Vacuole-mitochondrial cross-talk during apoptosis in yeast: a model for understanding lysosome-mitochondria-mediated apoptosis in mammals.
    Sousa MJ; Azevedo F; Pedras A; Marques C; Coutinho OP; Preto A; Gerós H; Chaves SR; Côrte-Real M
    Biochem Soc Trans; 2011 Oct; 39(5):1533-7. PubMed ID: 21936847
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Vacuolar pH is one factor that regulates hydrolase secretion.
    Hohman TC; Bowers B
    Eur J Cell Biol; 1986 Jan; 39(2):475-80. PubMed ID: 3514221
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants.
    Raymond CK; Howald-Stevenson I; Vater CA; Stevens TH
    Mol Biol Cell; 1992 Dec; 3(12):1389-402. PubMed ID: 1493335
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex.
    Kim J; Huang WP; Klionsky DJ
    J Cell Biol; 2001 Jan; 152(1):51-64. PubMed ID: 11149920
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Regulation of copper-dependent endocytosis and vacuolar degradation of the yeast copper transporter, Ctr1p, by the Rsp5 ubiquitin ligase.
    Liu J; Sitaram A; Burd CG
    Traffic; 2007 Oct; 8(10):1375-84. PubMed ID: 17645432
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Specific functions of lysosomal proteases in endocytic and autophagic pathways.
    Müller S; Dennemärker J; Reinheckel T
    Biochim Biophys Acta; 2012 Jan; 1824(1):34-43. PubMed ID: 21767668
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Three proteolytic systems in the yeast saccharomyces cerevisiae.
    Jones EW
    J Biol Chem; 1991 May; 266(13):7963-6. PubMed ID: 2022624
    [No Abstract]   [Full Text] [Related]  

  • 77. Mechanisms controlling plant proteases and their substrates.
    Fernández-Fernández ÁD; Stael S; Van Breusegem F
    Cell Death Differ; 2023 Apr; 30(4):1047-1058. PubMed ID: 36755073
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Novel proteases: common themes and surprising features.
    Vandeputte-Rutten L; Gros P
    Curr Opin Struct Biol; 2002 Dec; 12(6):704-8. PubMed ID: 12504673
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Proteases of Melilotus alba mesophyll protoplasts : II. General properties and effectiveness in degradation of cytosolic and vacuolar enzymes.
    Canut H; Dupré M; Carrasco A; Boudet AM
    Planta; 1987 Apr; 170(4):541-9. PubMed ID: 24233018
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The proteolytic landscape of the yeast vacuole.
    Hecht KA; O'Donnell AF; Brodsky JL
    Cell Logist; 2014 Jan; 4(1):e28023. PubMed ID: 24843828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.