BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 8130071)

  • 21. Analysis of the glucose transporter content of islet cell lines: implications for glucose-stimulated insulin release.
    Brant AM; McCoid S; Thomas HM; Baldwin SA; Davies A; Parker JC; Gibbs EM; Gould GW
    Cell Signal; 1992 Nov; 4(6):641-50. PubMed ID: 1489658
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insulin regulation of glucose uptake: a complex interplay of intracellular signalling pathways.
    Khan AH; Pessin JE
    Diabetologia; 2002 Nov; 45(11):1475-83. PubMed ID: 12436329
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 1-[N, O-bis-(5-isoquinolinesulphonyl)-N-methyl-L-tyrosyl]-4- phenylpiperazine (KN-62), an inhibitor of calcium-dependent camodulin protein kinase II, inhibits both insulin- and hypoxia-stimulated glucose transport in skeletal muscle.
    Brozinick JT; Reynolds TH; Dean D; Cartee G; Cushman SW
    Biochem J; 1999 May; 339 ( Pt 3)(Pt 3):533-40. PubMed ID: 10215590
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of glucose-transporter gene expression in vitro and in vivo.
    Kahn BB; Flier JS
    Diabetes Care; 1990 Jun; 13(6):548-64. PubMed ID: 2192844
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overexpression of Glut-1 glucose transporter in human breast cancer. An immunohistochemical study.
    Brown RS; Wahl RL
    Cancer; 1993 Nov; 72(10):2979-85. PubMed ID: 8221565
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MAP kinase may play a role in the early phase of glucose transport in insulin treated 3T3-L1 fibroblasts.
    Merrall NW; Plevin RJ; Gould GW
    Biochem Soc Trans; 1993 Nov; 21(4):355S. PubMed ID: 7510645
    [No Abstract]   [Full Text] [Related]  

  • 27. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer.
    Macheda ML; Rogers S; Best JD
    J Cell Physiol; 2005 Mar; 202(3):654-62. PubMed ID: 15389572
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of hexose transport mutants to examine the expression and properties of the rat myoblast GLUT 1 transport process.
    Lu Z; Xia L; Mesmer OT; Lo TC
    Biochim Biophys Acta; 1995 Mar; 1234(2):155-65. PubMed ID: 7696290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interleukin-3 facilitates glucose transport in a myeloid cell line by regulating the affinity of the glucose transporter for glucose: involvement of protein phosphorylation in transporter activation.
    Berridge MV; Tan AS
    Biochem J; 1995 Feb; 305 ( Pt 3)(Pt 3):843-51. PubMed ID: 7531437
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human rhabdomyosarcoma cells retain insulin-regulated glucose transport activity through glucose transporter 1.
    Ito S; Nemoto T; Satoh S; Sekihara H; Seyama Y; Kubota S
    Arch Biochem Biophys; 2000 Jan; 373(1):72-82. PubMed ID: 10620325
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression of the glucose transporter isoform GLUT 4 is insufficient to confer insulin-regulatable hexose uptake to cultured muscle cells.
    Kotliar N; Pilch PF
    Mol Endocrinol; 1992 Mar; 6(3):337-45. PubMed ID: 1584210
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular events leading to enhanced glucose transport in Rous sarcoma virus-transformed cells.
    Weber MJ; Nakamura KD; Salter DW
    Fed Proc; 1984 May; 43(8):2246-50. PubMed ID: 6325250
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transformation stimulates glucose transporter gene expression in the absence of protein kinase C.
    Hiraki Y; Garcia de Herreros A; Birnbaum MJ
    Proc Natl Acad Sci U S A; 1989 Nov; 86(21):8252-6. PubMed ID: 2682641
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activation of PI3K is indispensable for interleukin 7-mediated viability, proliferation, glucose use, and growth of T cell acute lymphoblastic leukemia cells.
    Barata JT; Silva A; Brandao JG; Nadler LM; Cardoso AA; Boussiotis VA
    J Exp Med; 2004 Sep; 200(5):659-69. PubMed ID: 15353558
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased glucose transport in ras-transformed fibroblasts: a possible role for N-glycosylation of GLUT1.
    Onetti R; Baulida J; Bassols A
    FEBS Lett; 1997 May; 407(3):267-70. PubMed ID: 9175865
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growth factors and malignant transformation.
    Aaronson SA; Miki T; Meyers K; Chan A
    Adv Exp Med Biol; 1993; 348():7-22. PubMed ID: 8172024
    [No Abstract]   [Full Text] [Related]  

  • 37. The ubiquitous glucose transporter GLUT-1 belongs to the glucose-regulated protein family of stress-inducible proteins.
    Wertheimer E; Sasson S; Cerasi E; Ben-Neriah Y
    Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2525-9. PubMed ID: 1706526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glucose regulates its transport in L8 myocytes by modulating cellular trafficking of the transporter GLUT-1.
    Greco-Perotto R; Wertheimer E; Jeanrenaud B; Cerasi E; Sasson S
    Biochem J; 1992 Aug; 286 ( Pt 1)(Pt 1):157-63. PubMed ID: 1520263
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two regions of GLUT 2 glucose transporter protein are responsible for its distinctive affinity for glucose.
    Buchs A; Wu L; Morita H; Whitesell RR; Powers AC
    Endocrinology; 1995 Oct; 136(10):4224-30. PubMed ID: 7664639
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hemopoietic cell transformation is associated with failure to downregulate glucose uptake during the G2/M phase of the cell cycle.
    Kansara M; Berridge MV
    Exp Cell Res; 2004 Feb; 293(2):321-30. PubMed ID: 14729470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.