BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 8130083)

  • 1. Inhibition of cell growth by K+ channel modulators is due to interference with agonist-induced Ca2+ release.
    Lee YS; Sayeed MM; Wurster RD
    Cell Signal; 1993 Nov; 5(6):803-9. PubMed ID: 8130083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of cell growth and intracellular Ca2+ mobilization in human brain tumor cells by Ca2+ channel antagonists.
    Lee YS; Sayeed MM; Wurster RD
    Mol Chem Neuropathol; 1994 Jun; 22(2):81-95. PubMed ID: 7522451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of human brain tumor cell growth by a receptor-operated Ca2+ channel blocker.
    Lee YS; Sayeed MM; Wurster RD
    Cancer Lett; 1993 Aug; 72(1-2):77-81. PubMed ID: 8402579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. K+ and Ca2+ channel blockers may enhance or depress sympathetic transmitter release via a Ca(2+)-dependent mechanism "upstream" of the release site.
    Stjärne L; Stjärne E; Msghina M; Bao JX
    Neuroscience; 1991; 44(3):673-92. PubMed ID: 1661385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro antitumor activity of cromakalim in human brain tumor cells.
    Lee YS; Sayeed MM; Wurster RD
    Pharmacology; 1994 Aug; 49(2):69-74. PubMed ID: 7972323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. K+ channels and the intracellular calcium signal in human melanoma cell proliferation.
    Lepple-Wienhues A; Berweck S; Böhmig M; Leo CP; Meyling B; Garbe C; Wiederholt M
    J Membr Biol; 1996 May; 151(2):149-57. PubMed ID: 8661503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct inhibition of inositol-1,4,5-trisphosphate-induced Ca2+ release from brain microsomes by K+ channel blockers.
    Palade P; Dettbarn C; Volpe P; Alderson B; Otero AS
    Mol Pharmacol; 1989 Oct; 36(4):664-72. PubMed ID: 2554116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of K+ and Ca2+ channels by histamine H1-receptor stimulation in rabbit coronary artery cells.
    Ishikawa T; Hume JR; Keef KD
    J Physiol; 1993 Aug; 468():379-400. PubMed ID: 7504729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of K+ channel activity by 4-AP stimulates N-type Ca2+ channels in CHP-100 cells.
    Basavappa S; Romano-Silva MA; Mangel AW; Laro D; Campbell I; Brammer M
    Neuroreport; 1994 Jun; 5(10):1256-8. PubMed ID: 7919177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca2+ release from isolated sarcoplasmic reticulum of guinea-pig psoas muscle induced by K(+)-channel blockers.
    Ishida Y; Honda H; Watanabe TX
    Br J Pharmacol; 1992 Aug; 106(4):764-5. PubMed ID: 1382785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Block of ATP-regulated and Ca2(+)-activated K+ channels in mouse pancreatic beta-cells by external tetraethylammonium and quinine.
    Bokvist K; Rorsman P; Smith PA
    J Physiol; 1990 Apr; 423():327-42. PubMed ID: 2201761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basolateral K channel activated by carbachol in the epithelial cell line T84.
    Tabcharani JA; Harris RA; Boucher A; Eng JW; Hanrahan JW
    J Membr Biol; 1994 Nov; 142(2):241-54. PubMed ID: 7533841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A role for potassium channels in the regulation of cortical muscarinic acetylcholine receptors in an in vitro slice preparation.
    Shaw C; van Huizen F; Cynader MS; Wilkinson M
    Brain Res Mol Brain Res; 1989 Jan; 5(1):71-83. PubMed ID: 2538705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose stimulates glucagon release in single rat alpha-cells by mechanisms that mirror the stimulus-secretion coupling in beta-cells.
    Olsen HL; Theander S; Bokvist K; Buschard K; Wollheim CB; Gromada J
    Endocrinology; 2005 Nov; 146(11):4861-70. PubMed ID: 16081632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium-mediated agonists activate an inwardly rectified K+ channel in colonic secretory cells.
    Devor DC; Frizzell RA
    Am J Physiol; 1993 Nov; 265(5 Pt 1):C1271-80. PubMed ID: 7694492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different mechanisms underlying the repolarization of narrow and wide action potentials in pyramidal cells and interneurons of cat motor cortex.
    Chen W; Zhang JJ; Hu GY; Wu CP
    Neuroscience; 1996 Jul; 73(1):57-68. PubMed ID: 8783229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic currents in single smooth muscle cells of the canine renal artery.
    Gelband CH; Hume JR
    Circ Res; 1992 Oct; 71(4):745-58. PubMed ID: 1381293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity of voltage-gated K+ channels is associated with cell proliferation and Ca2+ influx in carcinoma cells of colon cancer.
    Yao X; Kwan HY
    Life Sci; 1999; 65(1):55-62. PubMed ID: 10403493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity-dependent modulation of K+ currents at presynaptic terminals of mammalian central synapses.
    Qian J; Saggau P
    J Physiol; 1999 Sep; 519 Pt 2(Pt 2):427-37. PubMed ID: 10457060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 4-Aminopyridine causes apoptosis and blocks an outward rectifier K+ channel in malignant astrocytoma cell lines.
    Chin LS; Park CC; Zitnay KM; Sinha M; DiPatri AJ; Perillán P; Simard JM
    J Neurosci Res; 1997 Apr; 48(2):122-7. PubMed ID: 9130140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.