BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 8130178)

  • 1. Lipid peroxidation in isolated membranes of cerebral cortex, heart and kidney.
    Rauchová H; Kalous M; Drahota Z; Koudelová J; Mourek J
    Physiol Res; 1993; 42(5):323-7. PubMed ID: 8130178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of membrane fluidity changes and thiobarbituric acid-reactive substances production in the inhibition of cerebral cortex Na+/K+-ATPase activity.
    Rauchová H; Drahota Z; Koudelová J
    Physiol Res; 1999; 48(1):73-8. PubMed ID: 10470869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of oxidative stress on (3H)N-methylscopolamine binding and production of thiobarbituric acid reactive substances in rat cerebral cortex membranes.
    Kvaltínová Z; Juránek I; Machová J; Stolc S
    Gen Physiol Biophys; 1993 Apr; 12(2):155-61. PubMed ID: 8405918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of nitric oxide with lipid peroxidation products under aerobic conditions: inhibitory effects on the formation of malondialdehyde and related thiobarbituric acid-reactive substances.
    d'Ischia M; Palumbo A; Buzzo F
    Nitric Oxide; 2000 Feb; 4(1):4-14. PubMed ID: 10733868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of mouse heart and liver microsomal lipid peroxidation by anthracycline anticancer drugs: characterization and effects of reactive oxygen scavengers.
    Mimnaugh EG; Gram TE; Trush MA
    J Pharmacol Exp Ther; 1983 Sep; 226(3):806-16. PubMed ID: 6411900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymic lipid peroxidation in the microsomal fraction of rat brain.
    Player TJ; Horton AA
    J Neurochem; 1981 Aug; 37(2):422-6. PubMed ID: 6790672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional transitions of the drug-metabolising systems under oxidative injury.
    Zavodnik L; Zavodnik I; Ignatenko K; Bryszewska M; Buko V
    Exp Toxicol Pathol; 1999 Jul; 51(4-5):446-50. PubMed ID: 10445414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on lipid peroxidation potential in different tissues induced by ascorbate-Fe2+: possible factors involved in their differential susceptibility.
    Pushpendran CK; Subramanian M; Devasagayam TP; Singh BB
    Mol Cell Biochem; 1998 Jan; 178(1-2):197-202. PubMed ID: 9546600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of succinate on mitochondrial lipid peroxidation. 1. Comparative studies on ferrous ion and ADP . Fe/NADPH-induced peroxidation.
    Szabados G; Andó A; Tretter L; Horváth I
    J Bioenerg Biomembr; 1987 Feb; 19(1):21-30. PubMed ID: 3571215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of cumene hydroperoxide- and NADPH/Fe3+/ADP-induced lipid peroxidation in heart and liver submitochondrial particles. Mechanisms of protection by succinate.
    Cavallini L; Valente M; Bindoli A
    Biochim Biophys Acta; 1984 Oct; 795(3):466-72. PubMed ID: 6089907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of phospholipid peroxidation induced by ferric ion-ADP-adriamycin-co-ordination complex.
    Sugioka K; Nakano M
    Biochim Biophys Acta; 1982 Nov; 713(2):333-43. PubMed ID: 6295497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NADPH- and iron-dependent lipid peroxidation inhibit aromatase activity in human placental microsomes.
    Milczarek R; Sokołowska E; Hallmann A; Kaletha K; Klimek J
    J Steroid Biochem Mol Biol; 2008 Jun; 110(3-5):230-5. PubMed ID: 18499441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of NADPH-induced lipid peroxidation in rat liver microsomal fractions as a function of age.
    Devasagayam TP; Pushpendran CK
    Biochem Int; 1985 Dec; 11(6):833-9. PubMed ID: 3937529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism for obesity-induced increase in myocardial lipid peroxidation.
    Vincent HK; Powers SK; Dirks AJ; Scarpace PJ
    Int J Obes Relat Metab Disord; 2001 Mar; 25(3):378-88. PubMed ID: 11319636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxalate modulates thiobarbituric acid reactive species (TBARS) production in supernatants of homogenates from rat brain, liver and kidney: effect of diphenyl diselenide and diphenyl ditelluride.
    Puntel RL; Roos DH; Paixão MW; Braga AL; Zeni G; Nogueira CW; Rocha JB
    Chem Biol Interact; 2007 Jan; 165(2):87-98. PubMed ID: 17188671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic determination of membrane lipid peroxidation.
    Maiorino M; Roveri A; Ursini F; Gregolin C
    J Free Radic Biol Med; 1985; 1(3):203-7. PubMed ID: 3836243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adriamycin-enhanced membrane lipid peroxidation in isolated rat nuclei.
    Mimnaugh EG; Kennedy KA; Trush MA; Sinha BK
    Cancer Res; 1985 Jul; 45(7):3296-304. PubMed ID: 2988766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxia-induced lipid peroxidation in the brain during postnatal ontogenesis.
    Rauchová H; Vokurková M; Koudelová J
    Physiol Res; 2012; 61(Suppl 1):S89-101. PubMed ID: 22827877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid peroxidation in rat liver microsomes. I. Stimulation of the NADPH-cytochrome P-450 reductase-dependent process in hyperthyroid state.
    Landriscina C; Petragallo V; Morini P; Marcotrigiano GO
    Biochem Int; 1988 Aug; 17(2):385-93. PubMed ID: 3142479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on lipid peroxidation in rat liver nuclei and isolated nuclear membranes.
    Vaca CE; Wilhelm J; Harms-Ringdahl M
    Biochim Biophys Acta; 1988 Feb; 958(3):375-87. PubMed ID: 3342247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.