BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 8130225)

  • 1. Control of substrate flow at a branch in the visual cycle.
    Saari JC; Bredberg DL; Noy N
    Biochemistry; 1994 Mar; 33(10):3106-12. PubMed ID: 8130225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties and immunocytochemical localization of three retinoid-binding proteins from bovine retina.
    Saari JC; Bunt-Milam AH; Bredberg DL; Garwin GG
    Vision Res; 1984; 24(11):1595-603. PubMed ID: 6398562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photochemistry and stereoselectivity of cellular retinaldehyde-binding protein from bovine retina.
    Saari JC; Bredberg DL
    J Biol Chem; 1987 Jun; 262(16):7618-22. PubMed ID: 3584132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. cis Retinol oxidation regulates photoreceptor access to the retina visual cycle and cone pigment regeneration.
    Sato S; Kefalov VJ
    J Physiol; 2016 Nov; 594(22):6753-6765. PubMed ID: 27385534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual cycle in the mammalian eye. Retinoid-binding proteins and the distribution of 11-cis retinoids.
    Bridges CD; Alvarez RA; Fong SL; Gonzalez-Fernandez F; Lam DM; Liou GI
    Vision Res; 1984; 24(11):1581-94. PubMed ID: 6543481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical properties of purified human retinol dehydrogenase 12 (RDH12): catalytic efficiency toward retinoids and C9 aldehydes and effects of cellular retinol-binding protein type I (CRBPI) and cellular retinaldehyde-binding protein (CRALBP) on the oxidation and reduction of retinoids.
    Belyaeva OV; Korkina OV; Stetsenko AV; Kim T; Nelson PS; Kedishvili NY
    Biochemistry; 2005 May; 44(18):7035-47. PubMed ID: 15865448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preferential release of 11-cis-retinol from retinal pigment epithelial cells in the presence of cellular retinaldehyde-binding protein.
    Stecher H; Gelb MH; Saari JC; Palczewski K
    J Biol Chem; 1999 Mar; 274(13):8577-85. PubMed ID: 10085092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinoid processing proteins in the ocular ciliary epithelium.
    Salvador-Silva M; Ghosh S; Bertazolli-Filho R; Boatright JH; Nickerson JM; Garwin GG; Saari JC; Coca-Prados M
    Mol Vis; 2005 May; 11():356-65. PubMed ID: 15928609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vitamin A and Vision.
    Saari JC
    Subcell Biochem; 2016; 81():231-259. PubMed ID: 27830507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of isomerohydrolase activity in the visual cycle.
    Winston A; Rando RR
    Biochemistry; 1998 Feb; 37(7):2044-50. PubMed ID: 9485331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual cycle impairment in cellular retinaldehyde binding protein (CRALBP) knockout mice results in delayed dark adaptation.
    Saari JC; Nawrot M; Kennedy BN; Garwin GG; Hurley JB; Huang J; Possin DE; Crabb JW
    Neuron; 2001 Mar; 29(3):739-48. PubMed ID: 11301032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake and isomerization of all-trans retinol by isolated bovine retinal pigment epithelial cells: further clues to the visual cycle.
    Timmers AM; van Groningen-Luyben DA; de Grip WJ
    Exp Eye Res; 1991 Feb; 52(2):129-38. PubMed ID: 2013297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular retinaldehyde-binding protein ligand interactions. Gln-210 and Lys-221 are in the retinoid binding pocket.
    Crabb JW; Nie Z; Chen Y; Hulmes JD; West KA; Kapron JT; Ruuska SE; Noy N; Saari JC
    J Biol Chem; 1998 Aug; 273(33):20712-20. PubMed ID: 9694813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the endogenous retinoids associated with three cellular retinoid-binding proteins from bovine retina and retinal pigment epithelium.
    Saari JC; Bredberg L; Garwin GG
    J Biol Chem; 1982 Nov; 257(22):13329-33. PubMed ID: 6292186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isomerization of all-trans-retinol to cis-retinols in bovine retinal pigment epithelial cells: dependence on the specificity of retinoid-binding proteins.
    McBee JK; Kuksa V; Alvarez R; de Lera AR; Prezhdo O; Haeseleer F; Sokal I; Palczewski K
    Biochemistry; 2000 Sep; 39(37):11370-80. PubMed ID: 10985782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subfunctionalization of a retinoid-binding protein provides evidence for two parallel visual cycles in the cone-dominant zebrafish retina.
    Fleisch VC; Schonthaler HB; von Lintig J; Neuhauss SC
    J Neurosci; 2008 Aug; 28(33):8208-16. PubMed ID: 18701683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promotion of the release of 11-cis-retinal from cultured retinal pigment epithelium by interphotoreceptor retinoid-binding protein.
    Carlson A; Bok D
    Biochemistry; 1992 Sep; 31(37):9056-62. PubMed ID: 1390692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The retina visual cycle is driven by cis retinol oxidation in the outer segments of cones.
    Sato S; Frederiksen R; Cornwall MC; Kefalov VJ
    Vis Neurosci; 2017 Jan; 34():E004. PubMed ID: 28359344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular retinaldehyde-binding protein interacts with ERM-binding phosphoprotein 50 in retinal pigment epithelium.
    Nawrot M; West K; Huang J; Possin DE; Bretscher A; Crabb JW; Saari JC
    Invest Ophthalmol Vis Sci; 2004 Feb; 45(2):393-401. PubMed ID: 14744877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 11-cis- and all-trans-retinols can activate rod opsin: rational design of the visual cycle.
    Kono M; Goletz PW; Crouch RK
    Biochemistry; 2008 Jul; 47(28):7567-71. PubMed ID: 18563917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.